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ABSTRACT 
 
The use of entangled states in a prospective standoff imaging sensor has been explored.  
Specifically, the question of whether enhanced performance (in terms of achievable 
resolution, in particular) may be obtained through the use of entangled states in a ghost 
imaging configuration has been investigated.  The resiliency of such a system in the 
presence of transmission impairments that necessarily accompany sensors in a tactical 
environment, such as large optical loss, atmospheric turbulence and scattering has been 
considered.  The prospective imaging sensor based on quantum entangled states has been 
compared with respect to a similar sensor based on classical states in terms of its 
expected performance.  Experiments concerned with the generation of ghost images with 
nondegenerate pulsed sources of entangled photons as well as with tri-photons have been 
carried out.  Prospects for multiple photon absorption by coupled quantum wells have 
also been studied. 

It has been found that entangled states in general can maintain their entanglement in 
the face of scattering and optical loss.  Also, propagation of the individual photons is also 
governed by Maxwell’s equations, just as with classical light so that the energy 
propagates at the wavelength of the individual photons.  States configurations have been 
found that offer enhanced resolution.  States have also been found that suffer 
impairments no more egregiously then classical light.  However, no entangled states and 
sensor configurations have been found that satisfy both of these crucial criteria 
simultaneously.  Quantum ghost imaging sensors have been found to give advantages in 
principle in resolution and signal to noise ratio when compared to their classical analogs.  
However, the conditions required to make use of these advantages will be very difficult 
to realize in practice.  We have formulated suggested structures for multiple photon 
detectors based on coupled quantum wells as well as tri-photon sources based on 
aperiodic gratings.  Experimentally, we have made what we believe to be the first 
measurements of correlation peaks as well as a ghost image utilizing a pulsed 
nondegenerate source of entangled photons.  We have also generated entangled tri-
photons (using hexagonally poled lithium tantalate) which will be required for the 
realization of enhanced resolution in an imaging sensor. 
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1 Summary 
The QSP Program goals are shown in 
tabular form in Table 1.  The central 
question being addressed by the NGC 
QSP team was whether entangled states 
could offer an enhancement in 
performance in a standoff imaging sensor.  
In particular, NGC examined ghost 
imaging where photons scattered from a 
target to a non-resolving detector can be 
used in conjunction with a spatially 
resolved image of the source to form an 
image of the target.  During the course of 
our work, we examined several classes of 
entangled states (GHZ states, W-states 
and entangled beams) and different 
configurations in terms of the numbers of 
photons that are retained at the sensor as 
opposed to being propagated to the target. 

A summary of the findings with 
respect to the first four elements of Table 
1 and the various configurations cited 
above is shown in Table 2.  Essentially, it 
was found that elements 1 and 3 of Table 
1 were generally satisfied for entangled 
states of various types and configurations 
cited above.  With regard to elements 2 
and 4, it was generally found that the 
various configurations examined satisfied 
either one or the other of these, but that no 
configuration satisfied both at the same time, which is, of course, the real metric of 
success for a proposed sensor configuration under QSP.   Thus, it cannot be said that, 
during the course of this work, a combination of states and conditions was uncovered that 
would satisfy the go/no-go milestones for the program.  An important subtlety of a sensor 
utilizing entangled states is that, since it is based on correlations between entangled 
photons, uncorrelated photons (i.e. noise sources) will register detections with a 
frequency that is far smaller than would be the case with a conventional system (that does 
not rely on correlated detections.)  This has two important implications.  The first is that 
background sources (such as daylight, for example) are less debilitating than what one 
might expect conventionally.  Secondly, large losses tend to increase the time required to 
form an image but do not, in and of themselves, prevent the formation of the image.  
However, in a tactical imaging system, the time required to form an image can be very 
important, depending on the details of the mission.  Therefore, image acquisition time is 
shown as a figure of merit in Table 2, even though it is not a program go/no-go 
milestone, per se, and one can see that it goes “hand in hand” with the requirement on 
sensitivity/resolution loss.  As we worked through QSP, it quickly became clear  

Table 1  QSP Program Objectives 
From the BAA. 
The photon's interaction with the target 
doesn't cause the non-classical state to be 
entirely lost. 
The quantum sensor can resolve two targets 
at a closer spacing than is possible with a 
classical sensor. 
The energy that travels between the quantum 
sensor and the target propagates at the 
single photon wavelength 
The quantum sensor suffers a loss of 
sensitivity and resolution that is no worse 
than the loss suffered by a classical sensor 
under the following conditions: 

 The transmission medium between the 
sensor and the target absorbs or 
diffusely scatters photons. 

 The target is in a daylight environment. 
 The target scatters incident photons non-

uniformly over 4π steradians 
Make a specific calculation of the resolution 
improvement achieved with a 3 dB loss in the 
transmission medium and a resulting 26 dB 
signal to noise ratio. 
An experiment whose goal is to provide 
additional validation of some results 
demonstrated analytically under the Base 
effort, particularly if the relevant theoretical 
base is underdeveloped.  The goal of a 
proposed experiment may be to determine 
results beyond the scope of the Base effort.   
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that resolution may not be readily separated from the signal to noise ratio, even though 
the calculation of the Rayleigh limit (for example) for an aperture is independent of the 
SNR.  The Rayleigh limit represents the separation between the maximum of the point 
spread function and its first zero.  Depending on the SNR and signal processing 
bandwidth available, one may either be able to do better or not quite as well as this limit.  
Additionally, quantitative determination of the signal to noise ratio is dependent on 
details of the system that are not well determined at this time, owing to the fact that the 
behavior of key system elements, such as the source and detectors that are as yet 
undeveloped, are unknown.  Still, we were able to carry out analysis on the program that 
permitted comparison between the proposed ghost imaging sensor and a baseline sensor 
utilizing a pseudo-thermal source.  This work is summarized in the following paragraph. 

Using classical decision theory NGC established a relationship between imaging 
resolution with respect to the Rayleigh diffraction limit and SNR.  It was found that, with 
roughly the same SNR, the quantum system proposed could provide the required 
resolution enhancement relative to a classical baseline.  A variety of ways to describe 
SNR for ghost imaging (using only two entangled beams) were utilized to compare the 
quantum and classical cases to each other.  The intensity interferometer approach seemed 
to be the most appropriate description, especially given the fact that the baseline system 
also consists of a ghost imaging sensor (a ghost imaging system based on pseudo-thermal 
light was adopted in the latter stages of the program, replacing the originally 
contemplated conventional targeting pod).  Within this framework it was found that for 
the same propagating wavelength and source output power that the quantum sensor could 
provide significantly greater SNR due to greater visibility and much tighter beam 
divergence than would be expected utilizing a pseudo-thermal source.  There are several 
caveats here, however.  One involves the assumption of similar optical power for the 
quantum and classical systems even though the former generally relies on a nonlinear 
optical process with extraordinarily low conversion efficiency.  Second, boosting the 
optical power output of the source necessarily sacrifices visibility as a result of accidental 
coincidences in the detection circuit.  Additionally, N-photon absorption detectors (at 
least beyond N = 2) do not exist, and, when they do exist, the efficiency is expected to be 
extremely small.  Lastly, the calculations ignore the degradation, and possible 
annihilation of the quantum entanglement upon the extremely high losses inherent to 

Table 2  States examined by NGC/UMBC for QSP Go/No-Go criteria. 
Ghost Imaging 
Configurations 

Target 
interaction 
does not 
destroy 
quantum state 

Quantum 
sensor 
resolution 
better than 
classical 

Propagating 
wavelength 
same as that of 
single photon 

Sensitivity/Resolution loss 
not worse due to channel 
scattering/absorption, 
daylight Lambertian target 

Image 
acquisition 
time not 
worse than 
classical 

Non-degenerate 
bi-photons  X 
N+1 -photon 
GHz state  
retain N (N≥2) 

 X    
N+1-photon 
GHZ state  
propagate N 
(N≥2) 

   X X 
N+1-photon W-
state (N≥2)    X X 
N+1 entangled 
beams (N≥2)  X X
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remote sensing with a diffuse target.  Nevertheless, since source and detector 
development were not areas of emphasis for QSP Phase I, we suspended detailed 
treatment of these issues, and simply dealt with them as system trades in the early portion 
of the analysis.    

As a result of its experimental work, NGC was able to measure second order 
correlation with its coincidence detection setup.  This is, to our knowledge the first time 
such correlation has been observed for a nondegenerate pulsed source.  This has enabled 
us to qualitatively see the expected drop in visibility with increased power of the 
entangled beams, which highlights one of the critical trades that must be considered in 
developing a concept of a quantum sensor.  Using this source, we have observed (just 
after the completion of the QSP program, on IR&D funding) what we believe to be the 
first ghost image realized with a pulsed nondegenerate source of entangled photons.  This 
is reported here since, clearly, it was enabled by the work on the QSP program.  
Incorporating a three-entangled beam source, such as the one conceived by NGC, would 
allow us to demonstrate the resolution enhancement that has been the focus of the 
theoretical work in this program.  Experimental work to the end of demonstrating 
imaging with tri-photons has also been carried out at UMBC.  UMBC utilized 
hexagonally poled LiTaO3 crystals to realize two sets of quasi-phase matching conditions 
simultaneously.  UMBC was able to show temporal correlations (i.e. a measurement of 

( )( )3231
3 ~,~ ttG ) for tri-photons from this source since the width of the correlation pulse 

(~1ns) was significantly smaller than the width of the pump pulse or other subsystems 
(~15ns), but did not succeed, as of the end of the QSP program, in forming a ghost image 
with the tri-photons. 
Based on our examination of the asymmetric coupled quantum well system, we believe 
that two-photon absorption can be obtained with temporal characteristics required for 
correlated photon measurements.  The correlation times can be controlled through the 
barrier strength of the region separating the core quantum well and the coupled quantum 
well.  A structure has been suggested for epitaxial growth and subsequent study as a 
means to verify our calculations.  The main unresolved question with regard to multi-
photon absorption in coupled quantum wells, however, revolves around the absorption 
strength, which will need to be increased by orders of magnitude ultimately to make 
detectors that are reasonably efficient.  This can be addressed to some degree simply by 
growing large superlattices.  However, the realizable improvement here is limited to 
about a factor of 100, which, while helpful, does not completely solve the problem. 
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2 Introduction 
This report describes work carried out under Contract Number FA8750-07-C-0201 on an 
effort entitled “Quantum Enhanced Imaging by Entangled States,” a part of DARPA 
STO’s Quantum Sensors Program (QSP).  Northrop Grumman’s work on QSP was 
carried out in collaboration with the University of Maryland at Baltimore County.  Our 
work on the program has centered around the use of entangled photons in a prospective 
standoff sensor based on the phenomenon of ghost imaging. 

Entanglement is a consequence of quantum mechanics and was first discussed in the 
seminal paper by Einstein, Podolsky and Rosen in 1935.1  It is known that groups of 
entangled photons act as a system and that (for example) when sets of two entangled 
photons of a given wavelength pass through an aperture a diffraction pattern is produced 
(with the appropriate detection of the system of entangled photons) as though the 
wavelength was half that of the individual photons.  In ghost imaging with entangled 
states, entangled photons are scattered from an object onto a non-resolving “bucket” 
detector while photons directly from the source are incident on a resolving detector (i.e. a 
focal plane array [FPA] or scanning single element detector) and an image is formed via 
correlation of the detection events on the resolving and non-resolving detectors.  This 
phenomenon has been demonstrated under laboratory conditions, but far less is known 
about ghost imaging under tactically relevant conditions.   The central questions taken up 
in our work on the program, then, were fourfold.  First, how can the improved resolution 
inherent to entangled states cited above be merged with the concept of ghost imaging.  As 
a corollary, can we achieve the resolution inherent to short optical wavelengths while 
reaping the propagation advantages of long optical wavelengths?  Secondly, how is ghost 
imaging affected by various transmission impairments encountered in standoff imaging 
systems, such as loss and scattering.  Thirdly, how does the signal to noise ratio required 
to achieve a given level of resolution in our quantum sensor compare to that which would 
be required in a classical baseline system?  Finally, can an experiment be fashioned to 
demonstrate the feasibility of our quantum sensor concept? 

In the following sections, we will see that the key question with respect to the 
viability of the proposed sensor concept in a tactical environment came down to 
developing a combination of entangled states and sensor configuration that allowed one 
to realize enhanced resolution while showing robustness to the optical losses arising both 
from path loss and Lambertian scattering by the target that characterize standoff sensor 
systems.  While we found configurations that accomplished each of these goals 
individually, no combination we have uncovered to date satisfied these criteria 
simultaneously, which is really the goal of the QSP program.  We also found that, subject 
to certain conditions that will be discussed below, one could expect an advantage in 
terms of the signal to noise ratio required to achieve a given level of resolution for a 
ghost imaging system utilizing entangled states as opposed to a similar sensor utilizing 
(for example) a pseudo-thermal source of photons.  Based on our examination of the 
asymmetric coupled quantum well system, we believe that two-photon absorption can be 
obtained with temporal characteristics required for correlated photon measurements.  The 
correlation times can be controlled through the barrier strength of the region separating 
the core quantum well and the coupled quantum well.  A structure has been suggested for 
epitaxial growth and subsequent study as a means to verify our calculations.  The main 
unresolved question with regard to multi-photon absorption in coupled quantum wells, 
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however, revolves around the absorption strength, which will need to be increased by 
orders of magnitude ultimately to make detectors that are reasonably efficient.  This can 
be addressed to some degree simply by growing large superlattices.  However, the 
realizable improvement here is limited to about a factor of 100, which, while helpful, 
does not completely solve the problem.  We also formulated a design for a source of 
beams of tri-photons based upon aperiodic gratings.  Since source development was not 
viewed as central to Phase I objectives, this was not fabricated, though it may be a 
candidate for source work going forward.  As a result of its experimental work, NGC was 
able to measure second order correlation with its coincidence detection setup.  This is, to 
our knowledge, the first time such correlation has been observed for a nondegenerate 
pulsed source.  This observation has enabled us to qualitatively see the expected drop in 
visibility with increased power of the entangled beams, which highlights one of the 
critical trades that must be considered in developing a concept of a quantum sensor.   

The experimental setup was then 
configured for ghost imaging but, owing to 
the much smaller collection efficiency in the 
imaging setup (as opposed to the correlation 
measurement setup) the measured signal to 
noise ratio was not sufficient to re-produce 
the characteristics of the target before the 
end of the program.  However, we will see 
below that the work toward producing a 
ghost image on the QSP setup was 
continued after the end of the program (on 
NGC IR&D funds).  As a result, we were 
able to obtain what we believe to be the first 
ghost image obtained with a pulsed 
nondegenerate source of entangled photons.  
Clearly, even if the actual image was not 
obtained during the course of the program, 
the result was, in large measure enabled by 
QSP and so is reported here.  UMBC (per 
correlation measurements) was able to 
generate a source of tri-photons using 
hexagonally poled lithium tantalate.  
However, as of the program end date, 
UMBC had not succeeded in forming a 
ghost image with these tri-photons.  The 
generation of ghost images with high flux 
beams of entangled photons as well as the 
realization of ghost imaging with tri-photons 
(and resultant expected enhanced resolution) 
are both areas where further study is warranted. 

This report is organized as follows.  The program goals are shown, for reference, in 
Table 3 and the first four elements were addressed based on fundamental theoretical 
considerations by the team at UMBC.  These results are discussed in Section VI.  The 
fifth element in Table 3 (along with systems related considerations) was addressed by 
NGC’s team at Rolling Meadows and these results are discussed in Section II.  

Table 3  QSP Program Objectives 
From the BAA. 
The photon's interaction with the target 
doesn't cause the non-classical state to be 
entirely lost. 
The quantum sensor can resolve two targets 
at a closer spacing than is possible with a 
classical sensor. 
The energy that travels between the quantum 
sensor and the target propagates at the 
single photon wavelength 
The quantum sensor suffers a loss of 
sensitivity and resolution that is no worse 
than the loss suffered by a classical sensor 
under the following conditions: 

 The transmission medium between the 
sensor and the target absorbs or 
diffusely scatters photons. 

 The target is in a daylight environment. 
 The target scatters incident photons non-

uniformly over 4π steradians 
Make a specific calculation of the resolution 
improvement achieved with a 3 dB loss in the 
transmission medium and a resulting 26 dB 
signal to noise ratio. 
An experiment whose goal is to provide 
additional validation of some results 
demonstrated analytically under the Base 
effort, particularly if the relevant theoretical 
base is underdeveloped.  The goal of a 
proposed experiment may be to determine 
results beyond the scope of the Base effort.   
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Experimental work was carried out at both NGC (in Rolling Meadows) and at UMBC.  
Efforts from these endeavors are described in Sections III and VII, respectively.  It is 
perhaps worth noting that, in spite of the fact that the results are reported in separate 
sections, there was considerable collaboration between the experimentalists at UMBC 
and NGC.  Though source and detector development were not primary thrusts on the 
program, they were included in the statement of work and efforts aimed at addressing 
source considerations and multiple photon detection in coupled semiconductor quantum 
well systems are recounted in Sections IV and V, respectively.  Finally, we summarize 
our results in Section VIII and provide suggestions for future study in Section IX.  
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3 System Analysis 
This portion of the final report for the NGC-UMBC QSP team describes the resolution 
and Signal to Noise Ratio (SNR) analyses that were conducted in order to assess the 
potential advantage of a quantum ghost imaging sensor relative to a classical baseline 
system.  While UMBC showed that it is possible to obtain a resolution enhancement of a 
factor of N relative to the Rayleigh diffraction limit using an 1,N  source, we still need 
to determine what the SNR requirement is for that resolution.  We also need to see 
whether the needed SNR for a quantum source is greater than that of a classical baseline.  
Consequently, we can establish a relationship between resolution and SNR, and then 
define SNR for ghost imaging sensors.  We will see that a quantum sensor can provide 
both resolution and SNR advantages with respect to a classical baseline, but the 
calculated benefits involve assumptions that may not be entirely plausible in a realistic 
system. 
 
3.1 Resolution 
A goal of QSP is to develop a remote imaging sensor that offers a tenfold increase in 
spatial resolution for a given SNR compared to a classical system.  We discuss below first 
considerations of resolution for classical sensors, and then relate the possible resolution 
to SNR for the classical and quantum cases.  We first note that, as mentioned in the 
proposal and discussed at the kickoff, NGC had identified a baseline product that could 
potentially benefit from QSP technology.  Our first investigations of SNR and resolution 
therefore assumed parameters that were relevant to that baseline.  In addition, the 
quantum system has always employed a ghost imaging scheme with different 
wavelengths in the two arms of the interferometer.  Because the spatial resolution 
enhancement depends on momentum correlation among all of the photons in the quantum 
state an important question is whether this correlation is preserved upon spectral 
separation of the photons emanating from the source.  NGC has found precedence in the 
literature for preservation of quantum entanglement between signal and idler photons 
following spectral separation of beams from nondegenerate parametric down converters.2   
Essentially, because the spectral splitting does not constitute a measurement of transverse 
position of the photons in either beam, it should not disturb the spatial entanglement in 
the plane perpendicular to the propagation direction.  Furthermore, under QSP, as we 
show in a later section, we experimentally prove that the photons remain entangled by 
detecting the correlation between photons that are spectrally separated after exiting a 
nondegenerate spontaneous parametric down converter (SPDC). 
 

3.1.1 Modulation Transfer Function 
The NGC team first began a quantitative analysis of the resolution of the baseline 
classical sensor, and then folded this into a modulation transfer function (MTF).  This 
quantity is used to characterize the resolution and performance of imaging systems, and 
describes their ability to transfer contrast from object to image as a function of angular 
spatial frequency f.   In fact, imaging system performance of an airborne sensor is often 
cast directly in terms of MTF through the use of bar target patterns on the ground.  The 
MTF of the sensor can be degraded by aberrations, obscurations, or defocusing in the 
optics or by turbulence in the channel between the object and imaging plane.  There are a 
variety of specific MT functions associated with the components of the system.  In each 
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case, the quality of the component is measured by how much the actual MTF falls below 
the ideal curve.  Generally, it is only at the lowest spatial frequencies, corresponding to 
large features, at which maximum contrast can be achieved, which is consistent with the 
MTF results shown below.   

We considered two dominant effects: diffraction-limit and turbulence. The 
diffraction-limited MTF for an aberration-free system with a perfectly circular aperture is 
defined by3 
 

( )[ ]21arccos2)( xxxxH diff −−=
π

    (1) 

where x is the normalized spatial frequency, 
cf
fx =  and  fc is the cutoff angular 

frequency given by  

λ
Dfc = ,        (2) 

 
where D is system aperture diameter and λ is the 
wavelength.  Table 4 shows the key parameters of the 
baseline system that have been used to determine the MTF.  
From Equation (2), one then finds that that contrast falls to 
zero at an angular spatial frequency of fc = 95 cycles/mrad.  
In an actual experiment, a square-wave target is often used, 
consisting of a pattern of alternating dark and light bars of 
equal width. The cutoff frequency then describes, for a 
given aperture and wavelength, the maximum density of 
bars below which imaging contrast is possible. 

In addition to diffraction, the atmospheric induced MTF is defined by4  
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⎥
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⎣
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⎝

⎛
−=

3/5

*44.3exp f
r
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where ro is the transverse coherence length (also known 
as the  Fried, or seeing parameter – see the section 
below on atmospheric considerations for a link model) 
that depends on the range and Cn

2.  Cn
2 varied 

from 321410 −− m  to 321710 −− m  as a function of altitude 
as shown in a previous report.  For easy comparison, we 
assumed that Cn

2 is constant over the range where the 
sensor would be used.  Table 5 shows the key 
parameters that were used in calculating the turbulence-
induced MTF. 

Figure 1 shows both diffraction limited MTF (blue 
curve) and turbulence induced MTF for 

32162 105 −−×= mCn  and 32152 105 −−×= mCn  (yellow 

Table 4  Key parameters 
of baseline for estimating 
diffraction limited MTF. 
Parameter Unit Value 
System 
aperture inch 6 
Pixel size μm 12 
Focal length mm 1700 
Wavelength μm 1.57 

 

Table 5  Key parameters 
for estimating turbulence 
induced MTF.  The 
multiple values correspond 
to different levels of 
turbulence, as exemplified 
by the yellow and magenta 
curves of Figure 1. 
Parameter Unit Values 

2
nC  m-2/3 5×10-16 

5×10-15 

Range to 
target kft 20 

20 
Transverse 
coherence 
length 

cm 29 
7.4 



 
 

9 
 

and magenta curves, respectively). The abscissa is angular spatial frequency, which 
varies from 0 to 100 cycles/mrad.  The ordinate is MTF, which runs from 0 to 1.  In the 
absence of atmosphere and with infinite aperture the MTF would equal 1 at all 
frequencies. In this example, however, the contrast decreases with angular spatial 
frequency due to the finite aperture in the diffraction-limited case, and due to the seeing 
parameter for the case of turbulence. 

With respect to diffraction, the resolution is degraded more or less by this 
phenomenon than by turbulence depending on the value of Cn

2.  We expect, for the 
diffraction-limited case, that the resolution is given by Δθdiff ≅ λ/D = 10 μrad, whereas 
for turbulence, with an infinitely large aperture, the resolution is governed by the seeing 
parameter according to Δθturb ≅ λ/r0 = 5.4 μrad and 21 μrad, respectively for r0 = 29 and 
7.4 cm.  These estimates explain the degradation in contrast seen in Figure 1. The 
performance of the sensor can therefore depend dramatically on atmospheric conditions 
near the ground, which can vary with time of day.  
 

3.1.2 Real Space Description of Resolution: Rayleigh Diffraction Limit 
Although MTF versus spatial frequency is a standard measure of sensor performance at 
range using bar targets, one can also utilize a description of resolution in real space 
relating to the Rayleigh diffraction limit.  We therefore began conducting a resolution 
analysis along the lines reported by BBN Technologies at the March 2008 Workshop.  In 

Modulation Transfer Function vs Angular Spatial 
Frequency
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Figure 1 Diffraction limited MTF (blue curve) and turbulence-induced MTF for 
32162 105 −−×= mCn  and 32152 105 −−×= mCn (yellow and magenta curves, respectively).  

The range to target was 20 kft. 



 
 

10 
 

this work, the resolution problem is posed in terms of statistics as described by Carl 
Helstrom in 1964:5 two targets are Helstrom-resolvable if the maximum a priori (MAP) 
probability of error is below some small number. 

A Monte Carlo simulation was coded for direct detection, with the expected 
irradiance distribution subject to Poisson noise.  A hard circular aperture was assumed, 
and the separation between sources was normalized to the angular Rayleigh resolution.  
The simulation results were consistent with those reported by BBN at the workshop in 
Utah.  Figure 2 shows the results for N = 10 photons incident on a detector of unity 
quantum efficiency.  The simulation is compared to the upper bound predicted by 
Bhattacharrya,6 a lower bound estimate formulated by Shapiro,7 as well as the quantum 
limit of detection.8  We have also calculated the error probability as a function of the 
SNR (equal to the mean photon number for Poisson statistics), and SNR versus target 
separation. 
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d/dRay

Lo
g(

P
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Bhattacharyya
Shapiro
Quantum Limit
Monte Carlo Simulation

Figure 2  Error probability (Perror ) versus separation of two point sources relative to the 
Rayleigh diffraction limit for N = 10 photons incident on a detector of unit quantum 
efficiency. 

 
The decision theory analysis was also used to calculate resolution versus SNR 

assuming Poisson-distributed noise for a separation of two point sources of 0.1 to 3 times 
the Rayleigh criterion.  Figure 3 shows the results of a Monte Carlo simulation in which 
we assumed an error probability of 10-2 based on the parameters of probability of 
detection PD = 0.9 and false alarm PFA = 10-6 respectively, as outlined in the DARPA 
metrics in the BAA.  The result is that obtaining Rayleigh resolution requires about 13 dB 
SNR. 
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Resolution vs SNR
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Figure 3  Resolution versus SNR for probability of error, Perror, of 10-2. 

 
A slightly different 

decision theory approach led to 
a similar result.  In this case, 
the classical baseline system 
was analyzed in terms of a 
generalized likelihood ratio 
test9 with Gaussian noise 
statistics and binary 
hypotheses H0 and H1 
corresponding to presence of 
either one or two point 
sources, and a jinc2 point 
spread function.  SNR was 
calculated analytically as a 
function of separation between 
two point sources up to the 

Rayleigh distance using the model of Shahram.10  Figure 4 predicts that in order to 
achieve Rayleigh resolution, we need to have SNR = 11 dB per pixel.  This is then the 
level of SNR that the quantum system would have to achieve in forming images with a 
pixel size that is smaller by a factor of ten. 
 

3.1.3 Resolution of Quantum versus Classical Ghost Imaging 
We extend the above results to a quantum ghost imaging sensor by incorporating a point 
spread function (PSF), derived11 for the 1,N  state, into the Monte Carlo simulation of 
resolution versus SNR.  We assume that there are N photons propagating to the target and 
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Figure 4 Minimum separation between point sources 
corresponding to given SNR for a classical sensor. 
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that in the sensor have wavelengths λ1 and λ2, respectively.  For two point sources on the 
object plane symmetrically located about the origin at radius a/2, we have 
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where 2ρ

r  is position on the image plane, L2 is the distance from the imaging lens to the 
array sensor, and deff is the effective distance between the lens and the object plane, 
defined as 12  
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where d1 is the distance between the source and the object and d2  is that between the 
source and the imaging lens of focal length F.  The relation to L2 and F is given by the 
Gaussian thin lens equation as 
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As discussed above, we set the error probability for distinguishing between one and two 
point sources to Perr = 0.01.  In the case of the new baseline sensor, λ1 = λ2, and N =1, we 
obtain the same result as for the original classical imager, leading to dmin/dRay = 1 at SNR 
= 13 dB.  For the quantum case, Wen et al.11 showed that the resolution is a function of 
the relative values of d1 and d2.  For N = 10, λ1 = 1550 nm, λ2= 800 nm, F = 5 cm, D = 2.5 
cm, and d2 = 10 cm, the best resolution requires values of d1 > 10 m.  Figure 5 shows the 
results for d1 = 100 m; greater distances do not increase resolution.  We also see that the 
resolution is not increased by a factor of ten for a given SNR.  This may be a consequence 
of loosely defining the number of counts per pixel to be equal to PSFSNRC pixel ×= .  In 

ideal photodetection of Poisson-distributed photons with average number n  incident on 

a single detector of quantum efficiency ηdet,  nSNR detη= .  For real detectors, and in 
particular, for the photons arriving at the bucket detector of the quantum ghost imager, 
the SNR is more complicated (see the section below on SNR in coincidence counting) and 
can be enhanced if the photons obey sub-Poisson statistics, or by signal averaging, or it 
can be depressed as the number of background photons increases.   With respect to 
coincidence counting, our definition of Cpixel is strictly valid in the case of equal counts 
on both detectors, a visibility V =1 , and multiplication by an additional factor 
corresponding to the square root of the number of counting intervals.13  The main point of 
Figure 5, however, is to schematically compare the resolution offered by the quantum 
case to that of the baseline ghost imager for the same SNR.  
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Resolution vs SNR
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Figure 5 Resolution versus SNR for different ranges of the baseline and quantum ghost 
imagers. 

 

  
The calculation of the resolution for the pseudo-thermal ghost imaging baseline 

assumes the paths shown in the setup of  Figure 6.  The associated PSF is  
 

Figure 6  Unfolded version of setup for pseudo-thermal ghost imaging. 
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where so = da – db and bi ds ′=  are the effective object and image distances, respectively, 
according to the Gaussian thin lens equation for this system.14  This equation is derived 
from the terms in the second order correlation function proportional to the product of 
Green’s functions for the two different paths.  Note that the lens here forms a secondary 
image since the thermal source already produces a lensless image at db = da.  As noted 
above, the lens is therefore necessary in remote sensing in order to allow for a much 
longer distance in the path to the target.  The yellow markers in Figure 5 show that for 
sufficiently long range the resolution is the same as in the bi-photon system.  This is 
because the resolution of the secondary ghost image is governed by the aperture of the 
lens, which is assumed to have the same diameter as that in the quantum setup. 

Overall, the above resolution analysis indicates that for the same SNR (11-13 dB) the 
quantum system increases spatial resolution with respect to the Rayleigh diffraction limit 
by a factor close to the number of entangled photons interacting with the target. 

In the above analysis, we have used classical decision theory analysis.  In a strictly 
quantum hypothesis test we would need to form the density operators for the quantum 
state.  In the case of pure states for the two hypotheses, Helstrom has shown that the 
probability of error is given by15 
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where 0ψ  and 1ψ are the states corresponding to H0 and H1 respectively.  Specifically, 
for the entangled N+1 state that we consider for our quantum imaging system, the two 
hypothesis states would differ by electric field operators acting on the crystal output; in 
one case the Green’s function for the field would contain an aperture function for a single 
point source, whereas the other’s aperture function contains two delta functions for the 
two separated sources.  In order to use the above expression, however, the states must be 
properly normalized, which has not yet been done.  Additionally, we do not have an 
analytically expression for the case of N > 2 entangled beams (versus photons). 
 
3.2 SNR Analysis 

3.2.1 General Quantum versus Classical Considerations 
We first discovered a direct comparison between SNR for quantum-correlated versus 
classical photons in the work by Jackson et al.16  The entangled photons were considered 
to be captured by a single detector with multi-photon efficiency ηn-ph, similar to what 
NGC had envisioned for its QSP sensor, and the dominant noise term was assumed to be 
shot noise due to photons entering the detector.  According to this analysis the ratio of the 
SNRs (R) in the correlated and classical cases is given by 
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where tP  and tP′  are the transmitted laser power to the target in the classical case, and 
the nonlinear optical crystal pump power in the case of the quantum sensor, ηNLO is the 
efficiency of the nonlinear optical (NLO) process for generating entangled photons, and 
ηdet is the classical detector efficiency.   One also assumes here that shot noise is 
dominated by signal as opposed to background photons.  If one further assumes that laser 
and pump powers are equal to each other, then R < 1 due to the inefficiency of the NLO 
process.  However, if the pump power is much greater than that of the laser one can have 
R > 1 as long one does not enter into a “stimulated emission” regime for which the 
downconverted output is diluted by uncorrelated photons. 
 

 

Figure 7  System architectures: classical versus quantum imaging. 

 
When the background photons (i.e., solar) dominate the shot noise R was shown to be 
governed by 
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where η1-ph is the single-photon detection efficiency of the multi-photon detector, n = 2, 
and the pump power is no longer required to exceed the laser power if the detector is 
designed such that ηn-ph>>η1-ph.  Of course, for n > 2, we will have to consider the 
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possibilities of many other multi-photon (i.e., 3, 4, …, n-1) absorption processes that 
compete with the n-photon absorption of interest. 

The above treatment is not adequate for describing the case of ghost imaging because 
one must consider joint detection between a bucket detector after the free space idler 
path, and an array detector in the local signal beam.   The classical versus quantum 
imaging scenarios are depicted in Figure 7.  One of the main benefits of ghost imaging is 
the ability to capture the idler photons with a point detector rather than array, giving a 
gain in signal proportional to the number of pixels.  However, the system setup is more 
complicated because of the need to perform joint detection.  These system trades are 
summarized in Table 6.  
 

3.2.2 SNR and CAR of Classical and Quantum Systems 
In our first system analysis of ghost imaging we described the detection process by a 
quantity – the coincidence to accidental ratio (CAR) - unique to joint detection.  We then 
analyzed the classical baseline (which at that time was not a ghost imaging sensor), 
according to the SNR per pixel as a function of range to the target as shown in Figure 8.  
The power SNR is then defined as  
 

( )2

2)(
Noise
GN

SNR sig= ,     (11) 

 
where G is a gain factor for the imaging sensor, Nsig is the number of signal 
photoelectrons, and noise is the total shot noise due to the number of dark electrons Ndark, 
solar photoelectrons Nsolar, and Nsig.  This noise was calculated as  
 

( )sigsolardark NNNGFNoise ++= 22 ,    (12) 
 
where F is the noise factor.  We see in Figure 8 that the slope changes, as expected, from 
a 1/R2 to a 1/R4 dependence as the optical beam size exceeds the area of the target. 

Table 6  Qualitative comparison of quantum versus classical systems. 
 Classical Imager Quantum Imager Comments 
Source Laser Laser with SPDC Efficiency to create entangled 

photons is critical for quantum 
imager 

Atmospheri
c Effect 

Two Ways (round 
trip) 

One Way (from 
system to target) 

Under severe turbulence and 
attenuation, quantum imager is 
better 

Optics System aperture 
limits resolution 
(diffraction limit per 
given wavelength) 

Diffraction limit can 
be overcome by 
multi-wavelengths 
(or multi-photons) 

Implementation will require more 
work on source and configuration 

Detector Array detector for 
imaging target 

Bucket detector for 
imaging target. 

Quantum imager has a gain by the 
number of pixels over classical 
imager. 
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Figure 8  Comparison of CAR of quantum sensor to SNR of classical one. 

 
For the quantum case we assumed the existence of an N+1-entangled photon source 

employed in a ghost imaging geometry.  The source emits photons in short pulses at a 
repetition frequency νrep limited by the dead times of the sensors.  We denote as the 
“idler” the N photons emitted in a spectral range favorable for atmospheric transmission 
for propagation to the target and back.  We choose the 1.55 μm wavelength because of 
the maturity of InGaAs avalanche photodiodes (APDs) in Geiger mode operation, and 
advanced components at that wavelength developed for telecommunications.  Ultimately, 
however, we may choose a photon wavelength in the long-wave infrared for mitigating 
losses due to atmospheric turbulence, and requiring Mercury Cadmium Telluride (MCT) 
detection.    

The “signal” photon (entangled with the N idler photons cited above) is retained for 
coincidence detection with the idler photons when they return from the target.  Initially, 
we considered the case of N = 2 (i.e., one signal, one idler) to simplify the analysis.  An 
SPDC source pumped at 532 nm would generate a 0.81 μm wavelength signal photon 
correlated with the above idler.  This wavelength lends itself to the lower noise, higher 
speed Si and emerging array detection.  

In recent studies of quantum correlated photons, it was shown that the ratio of 
coincidence counts per integration interval Rcoinc to accidental counts Racc peaks at 
detected entangled pair levels per pulse of < 10-2.17  We therefore considered that the flux 
incident on the idler detector or on each pixel of the signal detector array per gate interval 
was kept at or well below single-photon level to preclude saturation, and for achieving 
optimal SNR.  We noted that one of the key objectives of the UMBC work on QSP was to 
investigate means by which the counting rates could be raised while maintaining 
workable levels of SNR using methodologies such as entangled beams and current 
correlation.  Next, one could imagine a scheme in which the flux per array pixel is scaled 
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as a function of range and target cross-section either by adjusting the source flux or by 
attenuation of the photons at the detector.  As a practical matter, one must be careful, 
however, because the source output cannot be arbitrarily increased without running into a 
“stimulated emission” regime in which the degree of entanglement is diluted.  This 
occurs in SPDC sources, for instance when the single-pass gain crosses over from a low 
to a high gain region, where it goes from being quadratic in field magnitude (linear in 
pump power) to exponential.18   Still, for the purposes of our analysis, we sought to 
develop some required levels of output flux from a prospective source, which would 
serve as a development challenge for a subsequent phase of the QSP program. 

For the quantum ghost imager, we calculated the ratio CAR.19  This is not exactly the 
same quantity as SNR because it is a ratio of signal to background, rather than of signal to 
shot noise fluctuations, but we used it as a starting point for comparison with the classical 
system.  We surmised that a fraction fc of the photons emitted from the source were 
quantum-correlated with each other.  Assuming that the correlated pair production rate is 
μpair, the roundtrip loss for the idler photons is η2-way, the optical loss for the signal is 
ηlocal and the quantum efficiencies of the signal and idler photodetectors are ηs  and ηi, 
respectively, we have, for the number of coincidence counts,  
 

islocalwaypairccoinc fN ηηηημ −= 2 .    (13) 
 
The total number of signal counts μs is a sum of contributions from twin photons, 
uncorrelated (background) photons μb

s, and dark electrons that are detected at a rate ds.  
If the coincidence peak has a temporal width of Tc, determined by detector jitter, then we 
find 

csslocal
s
bpairs Td++= ηημμμ )( .   (14) 

 
The number of idler counts has an additional term due to the number μsolar of solar 
photons hitting the target.  Considering that these have a one-way loss of η1-way, and that 
the idler detector dark count rate is di, the total number of idler counts is 
 

( )( ) ciiwaysolarway
i
bpairi Td+++= −− ηημημμμ 12 .   (15) 

 
The coincidence peak is superimposed on a background of counts due to all of the above 
sources, including members of twin photon pairs that arrive at the same time as members 
of other pairs to which they are not correlated.  We referred to this background as 
accidental counts, given by  
 

isaccN μμ= .      (16) 
 
We defined the power ratio of coincidence to accidental counts as  
 

2

2

1
acc

coinc

N
NCAR = .       (17) 
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However, since accidental counts are measured within the coincidence time, it is more 
appropriate to add them to the coincidence counts before normalizing to the background, 
leading to  

( )2

2)(2
acc

acccoinc

N
NNCAR +

= .    (18) 

 
We used this quantity to compare with the SNR of the classical system, given that the 
following parameters in the quantum case were the same as in the classical one, in 
accordance with the QSP guidelines: wavelength of photons propagating to the target and 
back, average optical power out of the sensor, aperture size, geometric losses, 
background and target cross-sections.  Both sensors were assumed to emit light in the 
form of a train of pulses.  For photon coincidence counting statistics, however, it is 
advantageous to have a high pulse repetition rate (i.e., ≥ 100 kHz), whereas as for the 
classical system it is better to flood the target with a very high energy pulse, concomitant 
with lower repetition rate lasers.  

Given an array format of the classical system we assumed that the quantum sensor 
array had a resolution cell smaller by a factor of ten to conform to QSP’s goals.  An 
advantage of ghost imaging, however, is that the array can be placed in the signal path, 
for which optical loss is very low, and the weak idler return goes into a bucket detector.  
The main challenge is therefore to make the source flux high enough for adequate return 
of the idler from the target, while reducing the signal flux to single photon level required 
for the coincidence measurement.  The signal flux can be reduced by using a telescope to 
magnify the beam on the array, and/or a series of beam splitters to direct the light to 
multiple arrays that would be engaged in joint coincidence.  We assume for this analysis 
that only one array would suffice. 
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Figure 9  CAR2 versus fraction of correlated photons. 
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Using the parameters listed in Table 

7 we calculated SNR and CAR in Figure 
8, where we see that the range R at 
which the classical sensor has SNR = 13 
dB (the level required to achieve 
Rayleigh resolution, as shown above) is 
approximately 1 km.  We therefore 
adjusted the pulse energy of the 
quantum sensor such that, at the same 
R, we have single photon-level counts 
at both detectors and a CAR of 13 dB.  
Both CAR1 and CAR2 as plotted in 
Figure 8, are independent of R for 
distances such that the beam size is 
smaller than the target.  This occurs 
because in this regime, the coincidence 
and accidental counts have the same 
range dependence.  Beyond that range 
the idler photon return suffers a 1/R4 
dependence, causing the true 
coincidence contribution to the counts 
to become small compared to the 
background. Consequently, CAR1 

becomes a small number, and CAR2 approaches 1, but exceeds the classical SNR for all R 
> 1 km. 

For a fixed range (R ≅ 2 km) Figure 9 shows how CAR2 increases with degree of 
quantum correlation, and 
Figure 10 shows its 
dependence on the source 
rate of photons per second.   
Obviously, this rate is 
extraordinarily high, and 
would probably be difficult 
to achieve without 
significantly reducing 
visibility.  Furthermore, 
such fluxes may not allow 
the use of single photon 
counting.  Instead, we may 
need to view the output of 
the quantum sensor in this 

 
 
regime in terms of entangled beams, rather than entangled pairs.  For detection, current-
current correlation techniques may need to be employed.  These have been investigated 

Table 7  Values of relevant parameters for 
SNR/CAR calculations of Figure 9. 
Parameter Value 
Laser Pulse Width 5 ns 
Pulse Repetition Rate 20 kHz 
Beam Divergence 0.2 mrad 
Signal Wavelength 0.81 μm 
Idler Wavelength 1.55 μm 
Receiver Optics Transmission 0.5 
Signal Detector Efficiency 0.5 
Signal Coupling Efficiency 0.8 
Signal Array Time Jitter 200 ps 
Signal Array Dark Count Rate 1 kHz 
Idler Detector Efficiency 0.1 
Idler Coupling Efficiency 0.1 
Idler Detector Time Jitter 800 ps 
Idler Detector dark Count Rate 200 kHz 
Coincidence Detection Gate 
Width 10 ns 

Target Physical Area 18 m2 
Target Reflectivity 0.3 
Aperture Diameter 10 cm 
Solar Spectral Flux 267 W/m2·μm 
Atmospheric Attenuation 2 dB/km 
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Figure 10  CAR2 versus source flux (photons per second). 
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by UMBC for several years in the case of pseudo-thermal photons,20 but have only 
recently been explored with entangled photon sources.   

3.2.3 Atmospheric Effects 
One of the main goals of the experimental work was to eventually determine the effect of 
scintillation on quantum entanglement.  Consequently, NGC modeled beam propagation 
for a remote sensing scenario commensurate with the initial baseline.  

In order to include in 
our SNR model losses, 
both classical and 
quantum mechanical, 
associated with 
atmospheric turbulence, 
NGC modeled the 
propagation of beams from 
the airborne baseline 
sensor to a target on the 
ground and back.  To 
begin with, we study the 
effect of atmosphere on 
the spatial profile and 
spatial frequencies of the 
beam as modeled with 
physical optics code.  To 
account for atmospheric 

effects we considered the sensor to be located at an altitude of 20 kft with a range of 24 
km and moving at 200 m/s.  Using the Hufnagel-Valley model for the refractive index 
structure constant, 2

nC 21 assuming a wind speed at the ground of 20 mph, and a 
logarithmic dependence of wind speed with altitude h,22 we determined the height 
dependence of 2

nC  to be as shown in Figure 11.  The Fried parameter was then calculated 
for sections of the propagation path both for the downlink and uplink, varying between 
about 10 and 300 cm.  Gaussian beam propagation was modeled using GLAD software in 
which we iteratively performed diffractive propagation with phase aberration steps 
associated with each section of the path.  Figure 12 (a) – (c) shows spatial profiles of the 
beam at the starting point, at the ground (target), and back to the sensor, where it is 
diffracted by the 15 cm aperture.  Scintillation with these seeing parameters is clearly 
sufficient to break apart the beam into numerous spikes.   However, the effect on the 
spatial frequency distribution does not appear to be as drastic.  As seen in the FFTs of 
these irradiance distributions (Figure 12(d) – (e)) the initial peak is greatly sharpened due 
to the broadening of the beam (toward a plane wave) with distance, but higher spatial 
frequencies are introduced due to aperture diffraction (rings) and turbulence (lobes).  We 
conjectured that this spatial frequency redistribution disturbed the anti-correlation of 
transverse wave vectors between the free space propagating idler photon beam and the 
local signal beam, which does not propagate in atmosphere.  In fact, UMBC has shown 
that scattering of the returning idler has no effect on this anti-correlation as long as the 
photon is picked up by the bucket detector.  However, this may not true of the outgoing 
beam. 
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(a) 

 

 
(d) 

 

 
(b) 

 

 
(e) 

(c) 

Figure 12  (a) – (c) Spatial profiles of 
beam along atmospheric path. (d)-(e) FFTs 
of starting and final distributions of beam.  
Abscissa is in cycles per meter. 

 
An additional loss factor of potential importance in our quantum enhanced system is 

also associated with the atmosphere and is due to fluctuations in idler photon arrival 
times.  A loss is incurred if the fluctuations cause the photons to arrive outside of the 
entangled pair coincidence window.  According to Young et al.,23 the time-of-arrival 
variance for a Gaussian pulse of initial half-width T0 propagating a distance z in a 
turbulent medium with outer-scale size turbulence L0 and index of refraction structure 
constant Cn

2 is given by  
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a ασ +=
          (19) 

 
where α =0.3908·Cn

2z L0
5/8/c2, c is the speed of light, and L0 is the outer-scale parameter.  

If we consider T0 to be the initial coincidence width, and take conservative values of Lo = 
10 m, and Cn

2  = 10-12 m-2/3 we estimate the square-root of the variance, as shown in 
Figure 13.  The amount of 
broadening is seen to be 
negligible for widths greater 
than 1 to 10 ps.  In reality, 
the measured coincidence 
peak width will be 
broadened primarily by the 
much greater 100 to 1000 ps 
overall jitter of the detectors.  
Experimentally, fine 
adjustments to the idler 
sensor gate duration are 
used for coincidence count 
optimization.  The gate 
width is much wider than 
the coincidence width, 
especially for optical pulses 
> 1 ns. 

 
3.2.4 Ghost Imaging SNR Model  

We eventually developed a signal-to-noise ratio (SNR) model for quantum imagers that 
superseded our initial description of joint detection in terms of CAR. The model 
incorporated the effect of photon states peculiar to the quantum imager and the effects of 
solar background that are significant for systems operating outdoors.  The model also 
took into account the effect of joint detection that is unique to quantum imagers. This 
work is summarized in a paper presented at the SPIE Conference entitled “Quantum 
Communications and Quantum Imaging VI” (San Diego, Aug. 10-14, 2008).24  

Briefly, the model assumed an avalanche photodiode (APD) running in Geiger mode 
for both classical and quantum imagers. The unified model defines noise equivalent count 
(NEC) by 
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NEC
+++−

=
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     (20) 

The first term in the square root comes from the beam splitter relation for photons 
incident on an inefficient photodetector in the quantum model of direct detection.25  Here, 
ηq is quantum efficiency, F is the Fano factor, TC  the total counting period, and χjoint = 
TWMlocal is a scale factor for joint detection, with TW being the coincidence counting 
window duration, and Mlocal the count rate per pixel in the local detector.  Msig, Mback, and 
Mdark are the count rates for return signal from target, background, and dark count, 
respectively.  F describes the degree of entanglement of the quantum state:  In a perfectly 
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Figure 13  Variance in arrival time as a function of 
initial coincidence width after propagation through 40 km 
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entangled number state F = 0, whereas F = 1 for classical photons.   χjoint = 1 for the 
classical imager and can be reduced far below 1 for the quantum sensor by adjusting the 
photon count rate in the local path and temporal window.   SNR is then given by 
 

.
NEC
M

SNR sig=         (21) 

 
Using this expression we performed a trade study of parameters for a quantum ghost 
imager.  The model assumed an entangled photon source that transmits N degenerate 
photons at 1.55 μm to a Lambertian target 1 km away while keeping a photon of different 
wavelength for local coincidence detection.   This configuration was based on modeling 
by UMBC that showed N-fold increase in spatial resolution for an N+1-photon state if N 
photons were sent to the object to be imaged and one was held locally.  The photons 
returned from the target were assumed to be detected simultaneously (i.e., by an N-
photon absorber).  Because such a source and sensor do not exist, and we were not doing 
development of these components in this phase, we were limited to treating their 
efficiencies as variables.   

For the assumed value of Cn
2 of the atmosphere we required 10 dB of fade margin for 

the SNR.  This was based on a time series of the irradiance I generated by creating a 
normal random distribution of the log-amplitude parameter χ, and then calculating (with 
low-pass filtering for atmospheric time constant) the cumulative probability distribution 
of I, such that 99% of the time, I is greater than 5% of the mean (normalized to 1).  This 
percentage is then translated to a required margin for fading of 10 dB.  Consequently, the 
overall SNR needed for the sensor is this margin plus the level required to achieve the 
Rayleigh diffraction limit, i.e., 10 dB  + 11 dB = 21 dB.   

Before proceeding with the quantum case, we modeled a classical system in which 
the source output power was adjusted to a level commensurate with SNR = 21 dB.  The 
same average power was then assumed for the quantum system, as well as the same 
aperture size.  However, the quantum sensor beam waist was maximized, while avoiding 
clipping by the aperture, in order to minimize divergence, and therefore the size of the 
illuminated spot on the object.  This was necessary to attempt to satisfy the requirement 
of UMBC’s model that the N photons hit the same point on the target and return together 
to the sensor.26  We also assumed that the source output was an entangled beam that 
consisted of a large number of sets of N-photons, in each pulse, and, that perhaps 
multiple pulses would have to be transmitted to increase the probability that one of the 
sets of photons would return to the source unscathed; otherwise the entanglement is 
completely lost. 

Figure 14 shows the dependence of SNR versus detector efficiency for F = 0.9 
assuming unity detector quantum efficiency, and SNR versus F for both source and 
detector efficiencies equal to 1.  In these calculations we assumed that the output current 
of the N-photon was linear in incident photon flux, in accordance with theory of multi-
photon absorption of entangled states.27  This dependence holds if the entangled flux is 
very low, which is likely in the case of a return from a remote diffuse object.   

At the March ’08 QSP Workshop there was a question regarding the relevance in the 
beam splitter relation of the Fano factor F, which was shown to be only slightly less than 
1 by Rarity et al. in the case of post-selection following an SPDC.28  For the GHZ state 
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we have been considering, F = 0 by definition since the state has zero variance in photon 
number as long as the quantum state remains intact.  For W states the photon number 
may change while still retaining entanglement among the remaining photons, so 0<F<1.  
Entangled beams, on the other hand are generated at high gain with intense pump 
excitation.  Because of a concomitant increased probability of accidental coincidences 
this tends to degrade visibility,29 with an expected corresponding reduction in F.   As a 
result of all of these considerations we retain this factor in our modeling since we can 
always set it to 1 in the limit of classical photons.   
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Figure 14  SNR versus detector efficiency for F = 0.9 and unity bucket detector 
efficiency (left), and SNR versus F for unity source and detector efficiencies (right). 

While the actual values produced from this analysis are not yet meaningful, the 
results point out the issues that must be addressed in developing a quantum sensor for a 
real system.  One is the trade just discussed involving high photon flux versus visibility 
loss.  Another involves the requirement that the N photons travel in a tight beam together 
throughout the round trip.  Even if it were possible, this means that the image acquisition 
time is substantially increased over the classical case due to the need to now scan across 
the target. 
 

3.2.5 Ghost Imaging SNR: Intensity Interferometer Approach 
Late in the program, pursuant to DARPA’s suggestion, we decided that the baseline 
system should also be a ghost imager for the most direct comparison between quantum 
and classical sensors.  From an historical standpoint, ghost imaging is rooted in the 
famous intensity correlation experiments of Hanbury-Brown and Twiss, which were used 
to measure the angular diameters of stars.30  It therefore makes sense to describe SNR of 
the ghost imaging systems under consideration in terms of intensity interferometry.31  
Essentially, the signal is determined by the correlation between fluctuations in the 
detected photocurrents.  The noise has contributions from shot noise (Nss), wave noise 
(Nii) due to fluctuations in the intensity of light incident on the photodetectors, and a 
cross-term (Nsi) associated with correlation between wave and shot noise.  In stellar 
interferometry, shot noise is the dominant contribution.32    However, for pseudo-thermal 
light the wave noise term can be the greatest source of photocurrent fluctuations.  We 
therefore retain all of these noise terms for comparison. 
 

3.2.5.1 Photocurrent correlation 
As a first step we assume detection parameters similar to those of recent ghost 

imaging current correlation measurements.33 In order to determine the fraction of photons 
hitting the target we need to know the divergence of the beams in the object path.  The 
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pseudo-thermal source generates light emitting in a hemisphere, but a portion of it can be 
collimated with a lens.  We consider an initial source size d0 = 1 mm, D = 10 cm lens with 
f = 20 cm focal length for both the baseline and entangled photon sources.  For the 
entangled case, the nonlinear optical crystal bandwidth is given by ΔkzL = π, where Δkz is 
the deviation from perfect phase matching (z = beam propagation direction), and L is the 
crystal length.  Using momentum conservation, the small angle approximation, and 
Snell’s law for the beams exiting the crystal, the divergence of the target (idler) beam can 
be calculated for bi-photons from  

 

pi

s
i kk

k
L
πθ 2

= ,     (22) 

 
where kp, ks, and ki are the wave vectors of pump, signal, and idler, respectively.  For 
pump, signal, and idler wavelengths of 532, 810, and 1550 nm, respectively, this gives, 
for an L = 5 cm long PPLN crystal, a divergence θi = 13 mrad before the collimating 
lens.  Assuming average CW output power of 100 W, 1550 nm wavelength, a 25 m2 area 
diffuse target of reflectivity 0.3, but ignoring light reflected from clutter, we calculate the 
expected rate of photons captured by the sensor aperture as a function of range for both 
baseline and quantum sources, and compare to the rate of solar photons scattered off the 
target into the sensor, using an irradiance on Earth of 267 W/μm⋅m2,34  and to the dark 
current, calculated from the noise equivalent power of the photodiode of 1.5 pW/Hz1/2 
and an electronic bandwidth of 100 kHz.  Figure 15 shows that the solar photons yield a 
negligible contribution compared to the dark current, and that the photocurrents in the 
baseline and entangled photon systems fall below the dark currents at 1 km and 10 km, 
respectively.  One also sees that the baseline signal begins to decrease as R4 (due to laser 
spot size exceeding target area) at around 100 m, whereas this does not happen until 
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ranges greater than 10 km for the entangled photon case.  This single detection 
comparison is somewhat misleading, however, because what ultimately matters is the 
correlation between currents in two detectors, and this is what is calculated in the SNR 
below. 

We calculate the SNR versus range using the formalism derived by Gamo,35 for which 
 

222
iisiss NNN

SSNR
++

= ,                 (23) 

 
where ( ) ( )tItIS 21 ΔΔ=  is the correlation between fluctuations in the photocurrents in 
the two detectors, and the explicit expressions for the noise terms are given in the 
referenced paper.  Here we ignore the solar and dark current contributions, and we 
assume that the locally retained photons provide a photocurrent that is maintained at a 
level equal to one tenth of the detector’s saturation level.  In the case of an entangled 
source, the wavelength of these photons is 810 nm.  Figure 16 
shows the SNR for the two sensors versus range.  The SNR is constant for ranges up to 1 
km for the baseline and up to greater than 100 km for entangled photons.  This is due to 
the dominance in this range of intensity noise, which has the same dependence (i.e. ∝ 
I1I2) on detector photocurrents as S, leading to a range-independent SNR.  A similar 
saturation of SNR has also been recently calculated for photocurrent correlation for both 
classical and non-classical sources in the limit of high brightness (i.e., short range in our 
case).36  For longer range the correlation of shot noise with wave noise (beating term) 
dominates, leading to a reduction in SNR due to a different proportionality ( 12 II∝ and 

21 II∝ ) with the photocurrents. 
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Figure 16  SNR versus range for baseline and quantum entangled photon sources. 
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The difference between the SNR for the two sources for short range is due to a higher 

visibility (100%) assumed for the entangled photon versus pseudo-thermal (33%) source 
(ideal cases).37  Of course, the actual visibility of an entangled photon source producing 
multiple watts optical power may actually be much smaller than the baseline case,38 
which may nullify any advantage afforded by the more collimated beam.  In this situation 
the more sensitive single photon detection would enable weaker source intensities to be 
used.  It is more likely that shot noise will dominate over shorter ranges.  The extent to 
which shot or wave noise dominates is determined by a degeneracy parameter 
representing the number of degrees of freedom M (both temporal and spatial) of the 
intensity incident on the photodetectors within the measurement interval.  The role of M 
in coincidence counting will be discussed below. 
 

3.2.5.2 Coincidence Counting 
Above we considered the case of very powerful beams emanating from the source, 
enabling detection of photocurrent from the photons returning from the diffuse target.  
Photocurrent detection is the standard mode of correlation measurement for pseudo-
thermal ghost imaging.  Here we assume lower light intensities, allowing the use single 
photon detection, which is the usual method employed in ghost imaging with entangled 
photons.   

For coincidence counting over Nc intervals, the SNR is expressed as31 
 

M
NNN

SNR c
2

1221 μ
= ,     (24) 

 

where N1 and N2 are the counts in the two detectors, and μ12 is the complex coherence 
function.  The latter is equal to the visibility when N1 = N2, as is typical in bench top 
entangled photon ghost imaging experiments.  We assume as above ideal cases for which 
μ12 = 1 and 1/3 for the entangled and pseudo-thermal sources, respectively.  We note that 
M = MsMt associated with the number of spatial (Ms) and temporal (Mt) modes within the 
detection aperture and integration time T, respectively.  

To estimate the number of temporal modes we take the spectral bandwidth of the 
SPDC output to be 10 nm,39 which corresponds to τc = 800 fs coherence time for the λ = 
1.55 μm wavelength photons.  Given a detector integration time T greater than the 
coherence time τc, we have Mt ≈ T/τc.  The time resolution is dominated by the jitter in 
the InGaAs detector, which is on the order of T = 1 ns.  Consequently, Mt = 1250 modes.  
For a pseudo-thermal source the coherence time can be many orders of magnitude longer.  
In Scarcelli’s work,40 for example, τc = 1 μs, much greater than the APD rise time so that 
Mt = 1.    

The value of Ms depends on the size and shape of the receiving aperture and optical 
beam, as well as roughness of the target.41 In the case of transmitting and receiving optics 
that share the same circular aperture, and a beam that is smaller than a diffuse target, Ms 
is exactly equal to 3.77.  For a beam that is only partially intercepted by the target, Ms 
varies according to  
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Where β = DlensDspot/λR.   In this equation it is assumed that the illumination spot Dspot on 
the target is a fixed size, independent of range, which can be accomplished through an 
adjustable telescope in the transmitter.  In general, Ms ≈ Adet/Αc when the active area of 
the photodetector Adet encompasses a large number of coherence cells each of area Αc.  
For an incoherent source that is uniformly bright across its surface we have13 

spot
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D
A π .42  For our ghost imaging configuration the 

number of coherence cells captured is determined by the receiver aperture, which then 
directs all of the received photons onto the bucket detector, so that for Alens >> Αc, which 

is the case for very short range (β >> 1), we have 
2
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Figure 17 shows, assuming λi = 1.55 μm, 10 cm aperture, and target 
of 5 m linear dimension, how Ms varies with β; for long range, where β becomes very 
small, Ms approaches 1.  For very short range (β > 10), Ms approaches Adet/Αc.  In 
general, we can then write (denoted as M3 in Figure 17) 
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4
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⎛+=

πβ
sM .  For our calculations, however, we assume that we have a fixed 

telescope so that the beam size is given by diffraction spreading.   Consequently, the 
range dependence of the coherence area cancels out, and Ms depends solely on whether 
the beam is smaller or larger than the target cross-section.  Thus, for fixed beam 
divergence - no zoom optics to keep the spot size constant on the target – Ms is constant 

until the range is great 
enough so that the beam 
grows larger than the target 
cross-section.  This occurs at 
a distance for which 

πθ
ett

threshold

A
R arg2

Δ
=  is the 

range at which the beam of 
full width divergence Δθ of 
the outgoing beam begins to 
exceed the effective radius of 
the target.   Beyond this 
distance we take the spot 
size to be equal to the 
effective diameter     of     the     
target,  
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Figure 17  Number of spatial coherence cells versus 
ratio of spot diameter to diffraction-limited resolution of 
receiver optics.  Mcirc is given by Eq. (25), whereas M3 is 
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ignoring any clutter 
surrounding it.   

The range 
dependence of Ms is 
shown in Figure
18 for both the
 
baseline and 
entangled beams.  
As expected, in the 
limit of very long 
range, the beam 
acquires a spatial 
coherence tending 
toward Ms = 1.  
When the beam is 
totally intercepted 
by the target, Ms 
depends on the 
relative sizes of the transmitting and receiving apertures.  For the baseline, these two are 
equal to each other, whereas for the entangled case, the transmitted beam is much smaller 
than the receiver lens.  Note that because of the huge divergence of the pseudo-thermal 
beam, Rthreshold is quite small (≈ 90 m), whereas this figure of merit is over 40 km of 
propagation distance for the significantly tighter entangled beam size to exceed the 
effective target diameter.  However, for greater range the spot size is the same for both 
cases giving equal values of coherence area and therefore Ms. 

The theory of intensity interferometry was developed primarily for measurements of 
the angular diameters of stars, and in such cases the values of M in the two arms of the 
interferometer should be very similar, if not identical to each other.  In ghost imaging, 
however, the number of spatial coherence cells can be vastly different for the two 
detectors in the coincidence setup.  

A rough measure of the transverse coherence cell area associated with the bi-photon 
can be estimated from the phase space cell size based on the uncertainty principle.  
Following Gatti et al.,43  given the transverse momentum Δpy of the idler photon at the 
output plane of an SPDC crystal of length L, the uncertainty in position of the signal 
photon is 

i
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c n
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π
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= ,                  (26) 

 
for a refractive index ni, so that the coherence area Ac = (λiL)/2ni.  For L = 5 cm, ni = 2.14 
(PPLN crystal), we have Ac = 5.6x10-9 m2 at the SPDC output plane and then 
magnification by ≈ 3 (= Fθi/d0) at the collimating lens.  We expect that no further 
magnification occurs through the ghost imaging lens (which would be true for long range 
targets and d2 = F in Equation (5)).  In ghost imaging experiments the detector in the 
reference arm is either a fixed array or a single element detector that is scanned in the 
transverse plane.  We assume that the detector is a 512×512 array and that the optical 
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Figure 18  Number of spatial degrees of freedom versus range for 
a circular source emanating from a rough target in the case that 
the beam size is larger than the target. 
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power directed to this arm is divided equally among the (512)2 pixels, each of 10 μm size.  
Assuming a photosensitive area of the detector of 10 μm linear dimension (i.e., 1×10-10 
m2 area), the detector intercepts only a portion of the coherent area so that for the bi-
photon signal (reference) arm we have Ms,ref = 1.  In the case of the pseudo-thermal 
source the speckle size at the collimating lens is Dspeckle = (λif)/d0 = 31 μm, which is also 
larger than the pixel size, again giving Ms,ref = 1.  We then make the assumption 
that objSrefSS MMM ,,= , where Ms,obj  is the number of degrees of freedom for the object 
arm calculated in Figure 18. 

So far in our consideration of SNR in coincidence counting we have ignored the effect 
of background counts due to uncorrelated photons from the source, solar photons, and 
dark counts.  Following Hanbury-Brown,32 we introduce a factor (1+a) to account for 
background (although we continue to neglect uncorrelated photons from the source since 
these depend on the details of entangled photon generation) such that  
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2
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 .        (27) 

 
Here (1+a) is the ratio of the total number of counts from all sources to the counts 
originating solely from the source photons.  For a pseudo-thermal source the value of a is 
negligible at short range (< 100 m), but at greater distances it grows larger than 1 as the 
source photon rate in the bucket detector begins to compete with the solar and dark 
counts.    For the entangled source the background is negligible over the entire range.   

Although the relative significance of this type of background makes sense for these 
two sources, the particular dependence on range depends on what source output power is 
chosen.  We arbitrarily chose a value of 0.1 W in order to keep the entangled photon rate 
of return from the target much greater than that from dark counts at ranges up to 10 km.  
Despite this power being three orders of magnitude smaller than that assumed for the 
photocurrent correlation case above, it is still many orders of magnitude greater than the 
bi-photon limit of SPDC output, for which we can expect the visibility (≈ μ12) to be equal 
to one.  Consequently, if one accounts for a drop in visibility due to accidental 
coincidences from uncorrelated photons, the SNR will probably much smaller than 
predicted in Figure 19.  Another assumption made in the 
calculation was that the output of both sources was split equally between the two arms of 
the interferometer.  This was within a range of splitting ratios that optimized the SNR for 
the entangled beam case, particularly at 10 km range. 

Overall we see again see that when we assume the ideal values of visibility (1, and 
1/3) for the entangled beam and pseudo-thermal sources, the former gives rise to a 
superior SNR over all values of range to the target.  This is primarily a result of the 
significantly smaller beam divergence of the entangled beam.  When one properly 
accounts for uncorrelated photons from the sources, this SNR advantage may be 
minimized or even reversed.  However, the degree of visibility reduction depends 
critically on the output power assumed, and may also depend on details of the source, 
which we do yet know for the hypothetical case of N ≥ 3 entangled beams. 
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4 Quantum Imaging Experiments 
Since the goal of QSP is to determine whether quantum effects can be used to some 
advantage in a remote sensor in a militarily relevant environment, NGC set up a ghost 
imaging apparatus with the intention of eventually testing interaction of the entangled 
photons with an outdoor target.  The main idea was to study the degradation of imaging 
resolution due to atmospheric effects.  The first task involved acquiring the necessary 
SPDC source crystals, single photon detectors, and correlation electronics, and then 
setting up correlation measurements on a lab bench.  The sections below describe the 
progress that NGC made in this undertaking. 
 
4.1 SHG System Setup and Diagnostics 

4.1.1 Nonlinear Optics 
We used a frequency-doubled 
(Figure 20) 1064 nm Q-switched 
laser (Spectra Physics, H10-106QW) 
for pumping SPDC sources to 
generate entangled photons (bi-
photons)  at pulse  repetition rates up  
to 100 kHz. Initial coincidence/ 
imaging experiments at NGC 
employed degenerate spontaneous 
parametric down conversion (SPDC) 
producing entangled photons at 1064 
nm.  This required (see Figure 20) 
generating a pump beam at 532 nm 
for which we used the above 
Nd:YAG pump laser, and a 
nonlinear crystal (SuperOptronics, 
KTP type II - designated as KTP1, 
and AR-coated for input and output 
wavelengths) to double its 
frequency.  The crystal was 3 mm×3 
mm×20 mm, with second order 
nonlinear optical susceptibility given 
by deff = 3.55 pm/V and cut for 
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KTP2

HWP3CM1CM2

fiber with 50 um 
diameter
connected to id201 
(InGaAs APD)

L3, KBX055
f = 62.9mm

PBS3 @ 
1064 nm

L4, KBX052
f = 50.2mm

v-pol

BPF 10 nm at 1064 nm

BPF 10 nm at 1064 nm

PBS4 @ 
532 nm

HWP4

power 
meter B
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noncritical phase matching. The crystal was housed in an oven (SuperOptronics, crystal 
oven controller) set at 80oC to avoid cumulative damage due to gray-tracking at high 
optical intensity.  

Figure 21 shows the setup for generating entangled photons via another nonlinear 
crystal - KTP2, which is nominally identical to that of KTP1, and is also AR-coated.  The 
output beam from KTP1 is vertically polarized with respect to the optical bench, which 
becomes the pump beam for KTP2.  After the two hot mirrors (Figure 20), two colored 
glasses were added to further reduce any residual pump beam for KTP1 at 1064 nm.  
HWP3 at 532 nm controls the polarization direction of the pump beam for KTP2.  The 
optical axis for KTP2 is horizontal to the optical bench - the same configuration as KTP1.  
KTP2 is also in an oven with temperature set at 80oC.  Two cold mirrors (CM) were set 
up  to block  residual  light at 532  nm.   A lens  with a  focal length of 50 mm was used to  

 
Table 8  SPDC efficiency. 
Parameter Symbol Unit RM UMBC 
Average Input 
Power Pavg mW 100 300 

Pulse Repetition 
Frequency Fpulse kHz 50 8 

Pulse Energy Epulse mJ 2 37.5 
Number of Photons Nphoton Photons/pulse 5.36×1012 1.00×1014 
Number of Photon 
Pairs Mphoton Pairs/pulse 1045 5000 

SPDC Efficiency ηSPDC  1.95×10-10 4.98×10-11 
 
focus entangled photons into a smaller area for better detection.  Table 8 compares the 
efficiencies of the SPDC setups at NGC to that at UMBC.  Both show how weak - ~ 10-10 
- the conversion is for optical parametric generation at these pump pulse energies.  This 
shows that the assumption in the SNR calculations regarding similar outputs for the 
quantum versus baseline systems may be completely unrealistic given the amount of 
electrical power that would be required, for instance to generate a 100 W idler beam in an 
airborne platform.  The efficiency is seen to be even weaker for the case of 
nondegenerate SPDC in Table 9. 
 
Table 9  Comparison of SPDC efficiency between degenerate and non-degenerate 
cases. 
Parameter Symbol Unit Degenerate Non-Degenerate
Average Input Power Pavg mW 100 200 
Pulse Repetition 
Frequency Fpulse kHz 50 50 

Pulse Energy Epulse mJ 2 4 
Number of Photons Nphoton Photons/pulse 5.36×1012 1.07×1013 
Number of Photon 
Pairs Mphoton Pairs/pulse 1045 732 

SPDC Efficiency ηSPDC  1.95×10-10 6.83×10-11 
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4.1.2 Coincidence Detectors and Electronics 
NGC obtained from idQuantique four avalanche photodiodes (APDs) – two Si (id100-
MMF50-ULN), and two InGaAs (id201-MMF-ULN) in order to enable degenerate ghost 
imaging experiments at 1 μm, nondegenerate at 810 nm and 1550 nm, as well as tri-
photon experiments in which either two Si detectors and one InGaAs or one Si and two 
InGaAs detectors would be used.  These were always operated in Geiger (as opposed to 
linear) mode in order to perform single photon detection.  The Si APD operated 
continuously, whereas the InGaAs APD was gated with a trigger input.  The dark count 
rate Rdark for the Si APD was extraordinarily low - less than 20 Hz – in agreement with 
the vendor’s specifications.  The InGaAs APD had many operational parameters such as 
trigger rate, detector gate width, dead time, photon detection probability.   The gate width 
could be varied from 2.5 ns to 100 ns.  Generally, the trigger rate, as determined by the 
pulse repetition rate of the Nd:YAG laser, was 50 kHz to 100 kHz.  The latter was 

practically  the  highest  rate  
that 
could be employed as a result of 
detector dead time constraints.  
With the single photon detection 
probability (SPDP) set at 25 % 
we measured the dark count 
rates at 10 kHz and 100 kHz.  
When everything else was fixed 
except trigger rate, the dark 
count probability was lowest at 
10 kHz among the available 
internal rates.  The data showed 
a dark count rate of 300 kHz at a 
trigger rate of 100 kHz; we 
assumed a conservative value of 
800 kHz dark count rate in our 
SNR model above. 

 The coincidence circuitry is 
shown in Figure 22 for the case of nondegenerate SPDC.  The InGaAs APD required an 
electrical trigger since it operated in gated mode.  The output of this detector was 
correlated with that from the Si APD using a time-correlated single photon counter 
(Becker & Hickl, DPC230).   The master laser Q-switch provided a delay generator (SRS, 
DG535) with the trigger source.  The delay generator compensated for the time (~ 350 
ns) between the optical pulse and the electrical trigger output.  Since the InGaAs APD 
could detect an incoming photon only during the gate width, timing was critical.  The Si 
APD was able to accept incoming photons at any time.  However, a long cable was 
introduced between the Si APD and the DPC230 so that the photon pulse at 810 nm could 
be further delayed with respect to that of 1550 nm, and both positive and negative sides 
of temporal correlation could be captured.  We therefore measured coincidences by 
treating the photon pulse of 1550 nm as “start” and that of 810 nm as “stop” inputs to the 
correlator board. 
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Figure 22 Electrical layout for the coincidence 
measurements with nondegenerate SPDC. 
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4.2 Experimental Issues 

4.2.1 Background light 
The first experimental issue we faced was that of a large amount of background 
generated by scattered light from the Nd:YAG laser.  Since the SPDC pump beam (the 
KTP SHG beam) was generated externally to the laser this light had the opportunity to 
scatter everywhere around the optical table, and eventually find its way to the APDs.  We 
minimized the scattered light effect by enclosing the receiver region with baffles.  In 
addition to the scattered light were photons from the SHG pump that were collinear with 
the SPDC output, and therefore could leak through the hot mirrors, colored glass filters, 
and HR 1.064 μm mirrors directly into the detectors.  All of these uncorrelated photons 
contributed to a background that reduced the visibility in correlation measurements.  We 
mitigated this contribution to background by adding crystal dichroic mirrors before the 
SPDC to highly reflect the 532 nm light while highly transmitting the desired 1064 nm 
light, as well as a Pellin Broca prism for further spatial discrimination against the laser 
leakage (see Figure 23). 

An additional way 
to circumvent the 
background problem 
was to replace the KTP 
crystal with one that 
was phase matched to 
produce two entangled 
beams that are 
nondegenerate at 810 
nm and 1550 nm.  It 
also created an 
opportunity to explore 
the viability and 
benefit of a 
nondegenerate source 
for ghost imaging for 

the first time.  Our aim was to test the recent UMBC predictions for resolution of such a 
configuration.44  For example, atmospherically transmissive photons can be used for the 
target, while the shorter wavelength ones would be retained locally by the more sensitive 
detector.  
 

4.2.2 Spurious Effects of InGaAs APD  
Another contribution to background counts came from the InGaAs APD that was used to 
detect photons at 1550 nm.  This included the effect of high bias voltage in the detector, 
and an increase in the background count in proportion to input photon flux.  As an 
example, Figure 24 shows the temporal profile of an entangled beam at 1550 nm captured 
by an InGaAs APD.  The pulse (fit by a Gaussian) sits on top of an offset that is linear in 
pump power (see the right side of Figure 24); this was not observed in the Si APD, 
however.  Those spurious counts were therefore deemed to be unique to the InGaAs 
device and not to input photons. 

Meter

PBS4 (attenuator and power 
measurment)

DM @ 532 nm

KTP

Pellin
Brokca

dump

f = 250 mm
Mirror

17"
4"

HWP4
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Figure 23 Modified setup for pumping the SPDC to reduce 
laser leakage at 1064 nm. 
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The InGaAs APD had several parameters that could be adjusted for optimization: 
time delay, dead time, photon detection probability and gate width. The device offers 
four options: 10 %, 15%, 20% and 25%.  Figure 25 shows the temporal profile of dark 
counts at all of those values.  As we show in the figure, the huge spike at the start of 
detector gate was due to the high value of detection probability. The data were collected 
for 100 s with respect to the master trigger from the laser while its beam was off, and 
with the detector sealed off from any external photons.  Although the starting times of 
each temporal profile were the same, they are shifted from each in the plots by 10 ns 
consecutively for easy comparison.  The spike at the start of the gate disappeared at 10 % 
and 15 %.  The inset on the right side illustrates it more clearly.  The graph on the right 
side shows the total dark count, which is exponential in detection probability, not linear.  
The operational parameter is related to detector bias voltage.  Although the higher value 
increases sensitivity, a user has to take into account its side effect as shown in this 
temporal profile.  Such spurious pulses created at random time will affect coincidence 
measurements in such a way that it washes away the correlation peak when it is used as a 
start.  After discovering the relation between the spike and offset with the higher photon 
detection probabilities, we kept the latter at the low value of 15%.   

 

 

Figure 24 Gaussian fit to temporal profile of InGaAs APD output (right), and pump 
power dependence of offset term (right). 

 

Figure 25 Dark count profile at various detection probabilities. 
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4.2.3 Spatial overlap of correlated photons 
In obtaining the correlation peak, we learned the critical importance of the spatial overlap 
of the correlated photons.  Each of the bi-photons in the entangled beam observes the 
relation (i.e. the phase matching condition) 
 

sip kkk
rrr

+= ,          (28)  

where pk
r

, ik
r

 and sk
r

 are the wave vector of the pump, idler, and signal, respectively.  

While pk
r

 is the same for every bi-photon, sk
r

 is not the same all the time.  Rather, it 
spreads over a space like a cone and its cross section is a circle.  In order to capture all of 
the photons regardless of the value of sk

r
, a bucket detector in one arm is set up at the 

focus of a lens with a large aperture.  The detector should be larger than the size of beam 
spot at the focus.  When it is done properly, the other detector can be located anywhere in 
the given space to produce the correlation peak.  Otherwise, the correlation peak depends 
on the location of the detector.  For example, when we connected an optical patch cable 
with a fiber core diameter of 62.5 μm to the end of the fiber collimator we could not 
observe the correlation peak.  But when we replaced the patch cord with one that had a 
core diameter of 400 μm, the peak was detected.  This was direct evidence for the 
importance of maximizing the capture efficiency of the bucket detector in order to 
guarantee detection of photons with wave vectors correlated with those of the signal 
photons entering the other detector.  

In our setup at NGES, we used optical patch cables with core diameter 50 μm. This 
was because our detector diameter was 50 μm and there seemed to be nothing to gain by 
increasing the core diameter of optical patch.  On the other hand, the beam diameter was 
on the order of 200 μm as determined with the InGaAs camera.  It was at this point that 
we realized that our two detectors were not configured properly from the spatial 
perspective so that we might not efficiently (or indeed, ever) observe correlated pairs of 
photons.  The observation of correlation peak required a very fine and reproducible 3D 
stage and optical patch cables with larger core diameters than what we normally used in 
our lab.  The latter might not increase the single count rate, but it will surely increase the 
probability for spatially overlapping correlated photons. Therefore, we henceforth 
employed multimode optical patches with 200 and 400 μm core diameters.  
 
4.3 Observation of a Correlation Peak 
After working closely with UMBC on their pulsed correlation setup with our InGaAs 
detectors we identified the technical obstacles to detecting correlation peaks, including 
those outlined above as well as others not reported here.  And after taking measures to 
minimize detector artifacts and classically correlated counts, and incorporating fiber 
pigtails large enough to capture the spatially correlated photons, we were able to detect 
true bi-photon coincidences, as shown in Figure 26(a).  The square marks in this figure 
show the correlation profile with an average pump power of 2 mW.  It consists of two 
parts: a very narrow peak at the center and a large hump.  The former is the correlation 
peak g(2)(0), the FWHM of which is less than 1 ns.  The large hump has 50 ns FWHM 
and is unique to the correlation profile of a pulsed beam, since it is not shown in the 
correlation profile by a CW pump (as observed at UMBC).  The solid curve in Figure 
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26(a) was generated by correlating the temporal profile of the1550 nm beam to that at 
810 nm.   It was scaled and shifted to be compared to the data, which mimics the hump of 
the data.  In light of this, the hump represents the classical correlation of the two temporal 
profiles.  

 
The two entangled photon beams each contain a huge number of bi-photons per 

pulse.  However, each APD detects only one photon per pulse since its dead time is much 
longer than the pulse duration.  Thus, each detector has a finite probability of observing 
photons created at different times within the pulse duration.  Figure 26(b) illustrates the 
underlying mechanism for the classical correlation.  We suppose, for instance, that three 
bi-photons are created via SPDC while the pulsed pump passes through the crystal.  Note 
that each of the three can be generated at different times within the pulse duration.  As a 
result, coincidences show a combination of different pairs (right part of Figure 26(b)), 
giving rise to the classical correlation.  Of course, the greater the number of pairs 
produced, the greater the probability of measuring coincidences among “wrong” pairs.  
This is therefore the fundamental tradeoff in terms of attempting to generate a large flux 
of entangled photons for a remote sensor:  the greater this flux, the smaller the 
contribution of true coincidences to the second order correlation g(2)(0).  In the December 
2008 monthly we specifically compared the performance of pulsed versus CW sources 
with the same average power, and showed that, because of a much greater number of 
photons per mode, the pulsed system is expected to have a g(2)(0) that is several orders of 
magnitude smaller.  Consequently, we assume a CW source in our modeling in Section II 
above. 
 
4.4 Performance Comparison Between Correlation Peak and Ghost Imaging 
During the final days of QSP, NGC attempted to obtain a ghost image of a transmissive 
target.  The setup for obtaining ghosting imaging was similar to that for obtaining a 
correlation peak, except one notable difference: the detector on the reference arm was at 
the image plane of the imaging lens. For clarity, the lens on the reference arm was called 
a “collimating” lens in the configuration for finding correlation peak and an “imaging” 
lens in the configuration for ghost imaging. The location of imaging lens and detector 
was determined by Gaussian Thin Lens Equation (GTLE) 
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where f is the focal length of imaging lens, a is the distance from the object plane to the 
imaging lens and b is the distance from the imaging lens to the imaging plane.  Since the 
detector was not located at the smallest spot size of the entangled beam, the configuration 
for ghost imaging collected fewer photons during this acquisition than in that for the 
correlation peak.  In fact, the reference detector is collecting only a small fraction of the 
light in the image plane in order to spatially resolve it, whereas in the correlation 
measurements virtually all of the photons in each arm are collected by the detectors. 

Figure 27 shows one of 
the results with the system 
configured for ghost 
imaging. For easy 
comparison, no targets 
were set on the target arm 
meaning 100 % 
transmittance.  The 
imaging lens had focal 
length of 100 mm.  The 
data were acquired at one 
“point” in the image plane 
for 46000 s, nearly 13 
hours.  The average pump 
power was 17 mW.  One 
can compare this result 
with that shown in Figure 
26(a).  It is easy to 
conclude that the SNR is 
significantly reduced in the 
case of ghost imaging. 

Upon further examination of the setup it was determined that the detector deviated a 
bit from the calculated image plane.  Furthermore, because of the small focal length used, 
any small deviation could have a significant effect, leading to a large amount of blur in 
the image.  We were therefore not able to accurately reproduce the object features in our 
first ghost imaging trial. 

 
4.5 Ghost Imaging with a Diffusive Target 
Under the program, we sought to determine whether there is a degradation in 
entanglement (or the status of quantum source) due to the presence of a diffusive target.  
UMBC concluded theoretically that a diffusive target would not change the entanglement 
of the source.  Recently UMBC published a joint paper with ARL on the ghost imaging 
with a pseudo-thermal source and a diffusive target that indirectly corroborates this 
assertion.45 

Earlier UMBC reported ghost imaging with a degenerate source at 900 nm. The pump 
beam was CW at a wavelength of 450 nm, and the nonlinear crystal was BBO.  The target 
was a mask with double slit.  NGC visited UMBC and worked closely with one of the 

 

Figure 27 Measured coincidences with the system 
configured for ghost imaging. 
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researchers there in order to (1) reproduce the result together and (2) apply the system to 
a diffusive target.  NGC confirmed the initial result with the mask target in transmittal 
mode.  When the mask target was replaced by a diffusive target, we could not obtain a 
correlation peak, much less a ghost image.  There were two possible explanations for this 
fact.  First, the diffusive target did not preserve entanglement and ruined the correlation 
peak in the coincident measurement.  Secondly, the pump power was too weak to 
overcome the loss due to diffusive scattering.  At the time of the experiment, the pump 
source was an Ar ion laser that had a plasma tube that was not operating at its maximum 
output power.  Its maximum power was only 100 mW.  In light of the efficiency of 
generating entangled photons we estimated the required pump power to be at least 1 W to 
overcome the loss in the diffusive target.  Given these limitations, we could not reach a 
meaningful conclusion on this study, but given the resources necessary to repair the laser, 
it is hoped that UMBC can eventually repeat this experiment when its pump source is 
restored to its full capacity. 
 
4.6 Ghost Imaging with Nondegenerate Source  Post QSP Activity Following 

Immediately from QSP Efforts 
As detailed immediately above, at the end of the QSP program, NGC had not succeeded 
in forming a ghost image  with  its  pulsed  non-degenerate  source  of entangled photons. 
However, immediately after the end of the program, some IR&D  funding  was  applied 
to  

continue with the work 
directed at obtaining a ghost 
image with the setup 
developed on the QSP 
program.  As a result we have 
measured what is, to our 
knowledge, the first ghost 
image realized with a pulsed 
nondegenerate entangled 
source.  This work is 
described in the following 
paragraphs. 

We had previously 
modified the existing setup 
for making coincidence 
measurements in order to 
obtain a ghost image, as 

reported above.  The main changes were in the distances between the various optical 
components and objects. Figure 28 shows a schematic diagram that highlights the 
pertinent distances for the development of a ghost image.  Their values are summarized 
in Table 10, where fimg is the focal length of the imaging lens. 

UMBC has published a paper on 
ghost imaging with a nondegenerate 
source.46  In accordance with the 
theoretical development in this 
work, we calculated the distance 

Figure 28 Experimental setup with distance 
relationship. 

Table 10  Values for the distances in Figure 
28. 

Parameters d1 d2 d4 fimg 
Values (mm) 304.8 50.8 44.4 62.9 
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Rimg from the imaging lens to an image plane along the reference arm and the 
corresponding magnification Mimg. For comparison, we calculated the same for the 
degenerate case. Table 11 summarizes the results where λobj and λref are the central 
wavelengths along the object arm and reference arm, respectively. 

The magnification by the 
nondegenerate source 
configuration is about 65% of 
that obtained with the 
degenerate source, so the two 
cases may be easily 
distinguished. We validated the 
theory through our experimental 

results as follows. We printed out an object on transparent film (3M, PP2500) as shown 
in Figure 29.  It was prepared so that it could be mounted directly on a lens holder. The 
circle represents the inner diameter (1 inch) of the holder, which was used for alignment.  
The two white strips had a width of 1.4 mm and the width of the black strip at the center 
was 1.2 mm.  

We moved the tip of the optical patch cord for the 
Si APD toward the imaging lens. We set it 5 mm off the 
calculated value for Rimg, since the single count rate was 
decreasing and eventually became comparable to the 
background count rate as we approached the calculated 
67 mm imaging distance from Table 11.  The 5 mm 
offset does not represent a particularly optimum value, 
but we will see below that we were able to obtain a 
ghost image in this way.  We obtained correlation peaks 
as we scanned the fiber across the plane (in the 
direction of xSi in Figure 28) in steps of 0.5 mil. Each 
correlation profile took 1 hour with the average pump 
power fixed at 10 mW. 

Figure 30 shows several correlation profiles taken at 
various location xSi of the fiber tip for the Si APD. Each 
channel in the abscissa on the graph in Figure 30 corresponds to a time shift of 164 ps. 
The as-measured correlation profiles lay one on top of the other.  However, in order to 
aid with visualization, each profile is shifted to in proportion to the change in xSi for each 
profile (a conversion of about 260 ps per μm of xSi proved to be convenient for display 
purposes). The legend in Figure 30 shows the actual value for xSi with for the particular 
trace.  Two of the measured correlation profiles show strong peaks that are related to the 
clear strips at the center of the object. Other profiles do not have the same peak. These 
are related to opaque part of the object.  

 In an earlier report, we defined three useful parameters from each correlation profile: 
Cmax, Cmin and ΔC.  We plotted Cmax and Cmin as a function of xSi. (shown as “Position” in 
the graph) and Figure 31 is the result. The error bar in Cmin reflects the standard deviation 
ΔC. The black line in this figure represents the pattern in the object (multiplied by the 
magnification for the nondegenerate case.) The maximum and minimum values in the 
line are chosen to follow the highest value for Cmax and the average value for Cmin, 
respectively. Although it appears blurred, it can be seen that we have observed a ghost 

Table 11  Calculation of Rimg and Mimg. 
Paramete

r 
Uni

t 
Nondegenerate 

Source 
Degenerate 

Source 
λobj nm 1550 1064 
λref nm 810 1064 
Rimg mm 67.0 69.1 
Mimg  0.065 0.098 

 

Figure 29 Object with two 
white strips. 
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image of the two white strips in our object/target. The image is certainly not as sharp as 
the  original  pattern,  but it  can be  improved  by adjusting  some of the parameters in 
the  

setup.  The agreement between the measured ghost image and the magnified image of the 
object serves to confirm that the theory developed in [46] describes the experimental 
results obtained here.  Note also that in Figure 31, we see a total of 30 correlation profiles 
each of which was approximately one hour in duration.  Thus, the total time to collect 
this image was of order 30 hours.  Finally, we note that, defining the visibility as 
 

minmax

minmax
CC
CC

V
+
−

= ,             (30) 

 
we can deduce an approximate value for the visibility in our measured ghost image that is 
of order 
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Figure 30 Second order correlation peak at various values for xSi. 
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Figure 31 Ghost image of the object.  The object profile (suitably magnified per 
calculations for the nondegenerate case in Table 11 is overlaid). 
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5 Triphoton Source Development 
Although source development was not a major thrust of the program, the task was 
nonetheless defined in the SOW, and such development would appear to be necessary 
from the standpoint of eventually demonstrating resolution enhancement in quantum 
ghost imaging.  Consequently, NGC spent a minimal amount of time modeling aperiodic 
gratings for producing tri-photon (N = 3) beams using the numerical procedure outlined 
by Kartoglu et al.47  Specifically, we considered two simultaneous optical parametric 
generators (OPGs) followed by a sum frequency generator (SFG) to generate one idler 
around 1550 nm and two photons in the visible and near IR (810 nm) that will stay local 
and be detected with Si APDs we have purchased.  Recently, UMBC has reported 
generation and coincidence detection of a (N =3) triphoton in which the state was created 
using a hexagonally poled photonic crystal.  This takes advantage of two down 
conversion processes, and one up conversion process that are simultaneously quasi-phase 
matched (QPM).  Such a crystal is not commercially available.   However, we can design 
aperiodic gratings for the 1-D case, and have the nonlinear optical crystal poled in a 
ferroelectric medium, or epitaxially grown in a non-oxide semiconductor. 

Because the photons that illuminate the target will propagate outdoors one must 
choose a wavelength for which there is low loss due to atmospheric attenuation and 
turbulence, and that is eye safe as well.  Photons in the infrared can satisfy these 
requirements.  The photon retained locally in the laboratory (or in a sensor on an airborne 
platform) can be chosen to have wavelengths compatible with a Si avalanche photodiode 
to take advantage of their low noise.  Figure 32 (left), for example, shows a schematic 
diagram of a crystal pumped by visible photons.  By setting appropriate phase matching 
conditions, the first two (SPDC) interactions can be made to have equal amplitude.  Two 
of the products then mix to form a third photon, in the visible (λ3), which is entangled 
with two others - one visible (λ2) and one infrared (λ1, for atmospheric propagation) - 
formed from the first two SPDCs.  In Figure 32 (right) we plot the power spectral density 
of the QPM spatial grating, showing that the overwhelming energy is channeled into the 
interactions yielding these three photons. The other features in the spectrum can be 
minimized through an iterative process in the algorithm for the grating design widths.  
The relative amplitudes of the photon fluxes can also be adjusted, for example, to 
maximize the output power in the beam that propagates to the target. 

Subsequent to UMBC’s theoretical finding that at least two photons must interact 
with the target, the design for the N = 3 state was changed to allow for the these two 
photons to have wavelengths compatible with the atmosphere, and to locally hold a near-
infrared photon that could be detected by a Si APD with high efficiency.  In order to 
accomplish this we again had two simultaneous OPG interactions, but then mixed s2 and 
i1 in difference frequency interaction to form λdfg = 1.55 μm.  We also lengthened the 
crystal in the design to 5.5 cm to create an extremely high flux beam.  A custom mask 
design was submitted to Deltronic, but we were subsequently told it could not currently 
be fabricated due to constraints in their poling technology.   We therefore ordered only a 
uniform grating of 5.5 cm length to achieve extremely high flux for outdoor experiments; 
a different vendor or approach would have to be pursued for the aperiodic idea. 
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Figure 32 Schematic of QPM grating to generate three entangled photons (left) and 
power spectral density of the grating (right). 
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6 Quantum Well Multiple Photon Absorbers 
6.1 Introduction 
The use of entangled state systems for high-resolution imaging depends on the 
simultaneous detection of the entangled photon pairs used in the imaging.  Present 
experiments employ two separate photodetectors and contain electronics that count 
simultaneous detections events in the two photodetectors.  Besides inherent inefficiencies 
of this technique, this method is viable only with single-element detectors; and imaging 
detector arrays cannot be used.  To create a high-resolution imaging system with 
entangled-state photons, true two-photon detection in a single detector element is 
required. 

In multi-photon detection, the key characteristics of the absorption are the 
wavelengths of the photons detected, the delay time allowed between the absorption of 
the individual photons of the photon pair, and the absorption cross-section for the two-
photon absorption.  The goal of this work was to examine each of these characteristics in 
the context of an absorption region created by a coupled quantum-well semiconductor 
layer structure.  By varying the semiconductor material and layer parameters in a coupled 
quantum-well system, the positions of the discrete energies in the quantum wells can be 
controlled.  The energy alignment of these levels determines the wavelengths of the 
photon absorptions.  In addition, the barriers between the wells can be used to control the 
transition rates among the energy states.  This controls the simultaneity required between 
the times of the absorption of the two photons.  Finally, the number of quantum-well 
layers coupled to the virtual state will determine the relative two-photon absorption 
coefficient of the system.    

A two-photon device must 
make use of a virtual energy 
state in the absorbing material to 
ensure that the photons are 
absorbed simultaneously, or 
nearly simultaneously.  In a 
material with a standard 
absorption of multiple photons 
as illustrated in Figure 33, the 
system first absorbs a photon 
that matches the energy for a 
transition from one energy 
eigenstate of the system to a 
second energy eigenstate.  
Subsequently, a second photon 
of the correct energy is absorbed 
by the material and the system 
makes the transition from the 
second to a third energy 
eigenstate.  In this energy 
structure, the system will remain 

in the intermediate excited state for some period of time.  Thus, uncorrelated photons that 
are not part of an entangled pair can be accidentally detected if their arrival is within 

 

1st Excited State

ω1

En
er

gy

ω2

hω1 = E1

Ground State

2nd Excited State

0

E1

E2

hω2 = E2-E1

Figure 33 Energy transitions using two photons with 
an intermediate energy eigenstate. 



 
 

48 
 

some finite time window.  In a detection system that is used for imaging, these false 
counts will be a background noise that may overwhelm the true signal. 

Since any energy eigenstate that is used in the absorption process will have a 
relatively large relaxation time, it is difficult for a two-photon detector to use such an 
arrangement; and for this reason, a two-photon process is preferable.  For a two-photon 
process, the system cannot use an intermediate energy eigenstate, but it must use a virtual 
energy state.  Such a system occurs in Cs-vapor atoms where two-photon absorptions 

have been examined48.  As is 
shown in Figure 34, a transition 
from the ground electronic state of 
the atom to one of the first excited 
states can occur by one of two 
means.  For a transition from the 
ground state with l = 0 to the first 
excited state with l = 1, a single 
photon of the proper energy ΔE = 
ħω1 can supply the required 
energy.  In the same system, the 
transition from the ground state 
with l = 0 to the first electronic 
excited state with l = 0 or l = 2 is 
first-order forbidden.  However, 
for an intense beam of photons 
with energy that is half the energy 
separation between the ground 
state and the l = 0 first excited 
state two photons can be absorbed 
simultaneously.  This pair of 

photons supplies the required energy for the electron transition to the excited energy 
eigenstate.  The pair of photons interacts with the material to form a virtual energy state 
allowing the absorption of these photons to occur.  Since the two photons must arrive 
simultaneously, the virtual state has a zero lifetime.  Thus, the probability that two 
identical energy photons will arrive at the atom simultaneously is vanishingly small.  
Therefore, background photons cannot activate the two-photon absorption process and 
will not produce noise in the detection system.   

The two-photon absorption process is inefficient even if the energy and time 
constraints on the photon pair are fulfilled.  This process can be increased, if the total 
system has a nearby energy state that enhances the virtual state absorption process.  The 
most well known application of this method is in resonance Raman scattering49, where 
the nearby energy state is an energy eigenstate of the atom.  We have examined 
enhancement of the two-photon process using asymmetric semiconductor quantum wells 
that create the necessary energy states to resonantly enhance the two-photon process. 

 
6.2 Asymmetric Coupled Quantum Well Absorption Structure 
A semiconductor quantum well consists of a single layer of material A embedded 
between two thick layers of material B, where B has an energy band gap larger than A 
and where the valence and conduction band discontinuities are such that carriers are 
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confined in the A material.  This is the situation for a variety of pairs of semiconductor 
materials GaAs/AlGaAs, GaInAs/AlInAs, GaSb/AlSb, GaInAsP/InP, etc.  In this work, 
we focused on the well-analyzed GaAs/AlGaAs semiconductor layer system that can be 
easily obtained.  The energy level scheme in the conduction and valence bands of the 
semiconductor-layered structure is well described by simple carrier confinement in a 
quantum-well potential, shown in Figure 35.  Two discrete bound states in the conduction 
band of the quantum well, with a continuum of states available above the barrier energy, 
and two discrete bound states in the valence band of the quantum well, with a continuum 
of states below the barrier energy are shown in the figure.  Electronic transitions can 
occur between the bound quantum-well states through the absorption or emission of 
photons.  These transitions are the same as the single-photon transitions that were 
illustrated in Figure 33. 

To determine the absorption spectra of 
these structures properly, the energy gaps 
between the valence and conduction bands 
of the well and barrier materials are 
required.  In our analysis, the energy 
levels of the conduction band electrons are 
calculated in the envelope wave function 
approximation using a Kane model;50 and 
the hole bands are described using the 
Luttenger Hamiltonian51.  The offsets for 
the valence and conduction bands are 
taken form Watanabe, et al.52  It is 
assumed that the initial detector structures 
will operate at cryogenic temperatures to 
reduce phonon-scattering effects; thus, 
temperature-dependent effects on the band 
energies were included.  Semi-empirical 
models by Varshni53 and Pässler54 for the 
thermal effects on band gaps were used to 
determine the energy gaps used in the 
quantum-well layers.  These calculations 

allow the determination of the material structures needed to produce the quantum well 
and barrier characteristics for the two-photon absorption region. 

To analyze the coupled quantum-well structures to determine the transition rate 
characteristics, we used a transfer matrix model and employed Mathematica code to 
calculate the bound-state wavefunctions and energies.  Initially, simple layer systems 
were examined and the results were compared to analytic results.  As an example, the 
bound-state conduction-band energies and eigenfunctions of a single quantum well with 
one, two, and three bound states, are shown in Figure 36.   
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Figure 37 illustrates two asymmetric quantum wells that are separated by 
successively smaller barriers.  In this pair of quantum wells, the well widths and depths 
are chosen so that the second bound state of the deep quantum well has the same energy 
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corresponding wave functions plotted in 
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Figure 37 A pair of asymmetric quantum 
wells with a degenerate state, where the 
separation of the wells is: a) 4a, b) 2a, and 
c) a, where a is the thickness of each well. 
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as the lone bound state in the shallow well.  As expected, there is very little interaction 
between the wells with a large barrier separating them and a large interaction between the 
wells with small barriers. 

 Figure 38 shows a pair of wells where 
the levels are not degenerate.  Although the 
separation of the wells is equivalent to that 
in Figure 37(c), the wave function from the 
first quantum well state that is present in the 
second quantum well is much smaller than 
that shown in Figure 37(a). 

These energy-level and energy-eigen 
function calculations are used to guide the 
structure design.  The energy-level 
differences yield the absorption wavelengths 
and the energy-eigen functions determine 
transitions rates and transition times 
between the bound states in the quantum-
well system.  Using our transfer matrix 
calculations, we can examine the 

spontaneous lifetimes for energy eigenstates in various quantum-well structures.  These 
calculations are based on standard first-order electric-dipole transitions between the 

quantum-well bound states.  In the first set 
of calculations, simple single quantum wells 
were examined, as shown in the following 
figures.   

Figure 40 illustrates the effect of 
increasing the width of the quantum well 
from a = 3 to a = 6 nanometers (tens of 
atomic layers) for a V = 1 eV energy well.  
These parameters are within the range of 
values for standard semiconductor quantum-
well structures grown for a variety of 
applications.  As expected, the lifetimes 
found are on the order of tens of 
microseconds for these well parameters.   

Figure 41 shows the effect of varying 
the well depth for a fixed well size of 4 nm.  
Again, as expected the spontaneous lifetime 
for the quantum-well states increases with 
well depth.  These simulations show that the 
well depth has a much smaller effect on the 
spontaneous lifetime of the excited quantum 

well state than the well width has on this lifetime.  The lifetime of a 4-nm wide, infinite 
quantum well was found to be 14 μs, a small shift from the lifetimes for wells a few eV 
deep.  Finally, we calculated the lifetime  
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Figure 38 A pair of asymmetric quantum 
wells where the separation of the wells is 
a, and the well depths are chosen so none 
of the states are degenerate. 
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for a 0.2-nm square well 
that has a well depth of 
17.6 eV.  This is 
approximately the size of a 
hydrogen atom, and the 
energy separation of the 
states in the well is 13.6 
eV, the same as the 2p to 
1s transition in the 
hydrogen atom.  The 
calculated lifetime of 6×10-

10 s is comparable to the 
hydrogen atom lifetime of 
2×10-10 s, when one takes 
into account the 
degeneracy of the 2p state 
of the hydrogen atom. 

 Next, we examined the 
transition probabilities and lifetimes for single and two-photon absorption in our 
asymmetric coupled quantum-well systems.  In this system, a pair of quantum wells with 
different well widths is coupled through a thin barrier.  This system is illustrated in 
Figure 42.  Two states are present in the first well; these states are labeled EC1 and EC3.  
The second well is the same well width as the first well; however, it is not as deep as the 

first well.  Thus, the 
bound-state conduction-
band energy (EC2) in the 
second well is larger than 
the lowest bound state in 
the first well.  Because the 
wells are separated by a 
thin barrier, the second-
well energy state couples 
through the barrier, and a 
virtual well state is found 
at energy EC2 in the first 
quantum well.  The 
coupling strength, and thus 
transition rates for single 
and two-photon 
absorptions can be 
controlled through the 
choice of the barrier 

strength (barrier height and barrier thickness). 
Figure 43 is a plot of the two-photon absorption rate that occurs when the second well 

depth is varied.  In this simulation, the barrier width is 0.5 nm, one-half the well widths 
used.  The transition rate increases by more than 105 when the first photon energy 
matches the EC1 to EC2 transition energy and the second photon energy matches the EC2 to 
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EC3 transition energy.  Thus, by including the coupled well state, a virtual two-photon 
absorption system can be created in the semiconductor structure. 
 

In Figure 44, we show the variation in the two-photon absorption transition rate as the 
barrier width is changed.  From this figure we can see that as the barrier strength is 
increased, the intermediate transition is less coupled to the core quantum well, and the 
two-photon absorption strength decreases.  This is true for both resonant and non-
resonant cases. 

The quantum-well structure 
that we have analyzed is 
analogous to organic crystal 
materials that have 
demonstrated high two-photon 
absorption enhancement.55  The 
basis for the design of the 
organic crystals was discussed 
with Dr. Goodson at the 
DARPA QSP workshop, and it 
is similar to our asymmetric 
coupled quantum well design.  
In the organic crystals, three 
eigenstates of the underlying 
structure that binds the carrier 
are present.  In our structure, 
these are supplied by the core 
quantum-well system, and they 
are designated as the ground, 

intermediate, and excited states in the accompanying Figure 45(a).  In the organic crystal 
material, the additional states that form the virtual intermediate states are supplied by the 
energy states of the surrounding organic crystal structure.  Again, as in the organic 
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Figure 43 Two-photon transition rate where 
the intermediate level is tuned into and out of 
resonance with the photon energies. 
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crystals, a set of states that are not part of the bound-state structure are formed with 
energies near resonance with the intermediate state of the bound system.  These are 
supplied by the asymmetric coupled quantum wells, and in Figure 45 they are designated 
as the extended states of the system.  The extended states are not eigenstates of the 
underlying core and are the basis for a virtual state that is nearly resonant with a true 
eigenstate.  The near-resonance enhances the transition probability for the virtual state, 
and the extended states form a basis for a larger optical absorption cross section.  
Superlattices (the asymmetric coupled quantum wells in our design) with many periods 
have been used in various electronic and optical quantum-well devices and these 
structures can be fabricated to examine the absorption cross section of the designs.  The 
additional feature shown in Figure 45(a) is the use of a non-square well in the core well 
layer.  This non-square well allows additional tuning of the absorption energy from the 
intermediate to the upper state of the core quantum well.  
(a) 

Figure 45 (a) Asymmetric coupled quantum well structure that mimics (b) two-photon 
absorption organic crystal material (from Lee and Goodson ref.[55]). 

The use of these virtual intermediate states has two effects.  The first is an increase in 
the overall two-photon absorption cross section.  This increase is related to the geometric 
size of the absorbing region for the second incident photon of the two-photon pair.  In the 
case of the organic crystal, this goes from the initial absorbing atom, to the size of the 
crystal molecule.  In the case of the semiconductor quantum-well structure, this changes 
from the size of the core quantum well to the size of the core plus the size of the coupled 
well structure.   Superlattices (multiple quantum well structures) of a hundred periods 
that exhibit coherent (band structure) characteristics have been grown using molecular 
beam epitaxy techniques.  With this structure the two-photon absorption cross section can 
be increased by several orders of magnitude using this structure. 

A second benefit of using the virtual photon technique is the non-classical absorption 
properties of entangled two-photon absorption (ETPA) compared to the classical two-
photon absorption (TPA).  The theoretical modeling of virtual state absorption ETPA 
predicts that for low photon number the absorption is linear with intensity, compared to 
the quadratic absorption of non-entangled photon pairs.56  Using the enhanced absorption 
in their organic crystals, Lee and Goodson were able to demonstrate this linear ETPA 
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rate compared to the quadratic nonlinear TPA rate (as shown in Figure 46).  This linear 
effect increases the ETPA absorption rate slightly over the TPA absorption rate for 
extremely low photon flux rates. 

 
6.3 Proposed Semiconductor 

Quantum-Well Test 
Structure 

 Based on our examination of the 
asymmetric coupled quantum-
well system we propose the 
following test structure design to 
corroborate the modeling done 
under this project.  The test 
design is a modification of the 
analysis, allowing special 
measurement capabilities to be 
used.  We have chosen the 
GaAs/AlGaAs material system 
for the test structure.  This 
semiconductor system is the best 
understood III-V semiconductor 
layer system and one that can be 
grown in the most controlled 

 

Figure 46 Linear ETPA rate and quadratic random 
TPA for porphyrin dendrimer at different 
entanglement times (from Lee and Goodson ref. 
[55]). 
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fashion with the lowest number of crystal defects.  Molecular beam epitaxial (MBE) is 
routinely used for growing these materials and this growth technique has atomic 
monolayer precision that is needed to realize these structures.  Figure 47 illustrates the 
first test structure, used to measure the two-photon absorption rate and various relaxation 
rates in the system.  Table 12 lists the layer characteristics of the test structure.  The 
quantum well materials are GaAs with a bandgap at 60K of 1.514 eV, and the outer and 
barrier materials are Al0.3Ga0.7As.  This material is virtually lattice matched to the GaAs 
layer, thus minimizing any crystal defects due to lattice mismatch between the layers.  
The barrier width of 2 nm was chosen to allow strong coupling of the quantum well 
states, as shown in the calculations.   

The test structure system is grown on a GaAs substrate and a series of GaAs/AlGaAs 
superlattices that lattice stabilize the substrate surface, pinning any possible substrate 
defects.  To increase the absorption in the sample, the test structure should be repeated 10 
times, with approximately 50 nm of Al0.3Ga0.7As between the test structures to isolate 
them from each other.  Finally, a 50-nm GaAs layer should be deposited on the top of the 
test structures to cap the AlGaAs layer preventing oxidation.  A second test structure with 
a slightly larger barrier (3 nm) can also be created to examine the change in the transition 
times as predicted by the model.  A third test structure that incorporates multiple coupled 
quantum wells (as shown in Figure 45) can be examined to address the increase in two-
photon absorption cross section due to the extended states in the coupled quantum well 
region.  In this test structure the GaAs coupled well (4 nm) and the Al0.3Ga0.7As barrier (2 
nm) would be repeated (10×) before the outer barrier layer of Al0.3Ga0.7As. 

Table 13 lists the quantum-well 
eigenstates and their energies with 
respect to the top of the valence band 
and the bottom of the conduction band.  
The use of the conduction band hole 
state as the ground state of the two-
photon absorption was chosen to allow 
the use of standard tunable sources for 
the characterization of the two-photon 

absorption.  Based on the calculated quantum-well energies, the first photon of the two-
photon absorption is at an energy of 1.610 eV, or a wavelength of 770 nm.  The second 
photon of the two-photon absorption is at an energy of 0.019 eV, a wavelength of 65 μm, 
or a frequency of 4.6 THz.  These wavelengths match well with the optical-pump / 
THz-probe spectroscopic system used at UMBC.  The titanium-sapphire optical-probe 
laser has a range 750 to 800 nm and the THz-probe source has a range of 1 to 10 THz 
covering the absorption features of the asymmetric coupled quantum-well system.  The 

Table 12  Test structure materials and 
thicknesses. 

Material Description Width (nm) 
Al0.3Ga0.7As Outer Barrier --- 
GaAs Core Well (W1) 10 
Al0.3Ga0.7As Inner Barrier (B) 2 
GaAs Coupled Well (W2) 4 
Al0.3Ga0.7As Outer Barrier --- 

Table 13  Quantum-well energies for proposed test structure. 
Designation Description Energy measured from 

band edge (eV) 
EH1 First Heavy-Hole Energy in Core Well -0.008 
EC1 First Electron Energy in Core Well 0.027 
EC2 First Electron Energy in Coupled Well 0.088 
EC3 Second Electron Energy in Core Well 0.107 
EC4 Third Electron Energy in Core Well 0.226 
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pump-probe system has a temporal resolution on the order of 100 fs and allows the 
examination of the various absorption and relaxation times in this system.  With this 
information, the possible two-photon correlation times can be determined. 

 
6.4 Conclusions  Quantum Well Multiple Photon Absorbers 
Based on our examination of the asymmetric coupled quantum well system, we believe 
that two-photon absorption can be obtained with temporal characteristics required for 
correlated photon measurements.  The correlation times can be controlled through the 
barrier strength of the region separating the core quantum well and the coupled quantum 
well.  The wavelengths for the two-photon absorption can be determined by the proper 
choice of the semiconductor barrier and well materials and the quantum well thicknesses.  
The test structures and optical characterization proposed will demonstrate that the 
asymmetric coupled quantum wells perform as a two-photon absorption system in TPA 
and ETPA experiments similar to the organic crystal structures of Lee and Goodson.  The 
optical characterization using femtosecond pump-probe spectroscopy will confirm that 
the correlation time can be controlled using the barrier width, as predicted by the model. 

The major issue that has not been resolved is the large two-photon absorption 
strength that is needed for low-photon-flux detection.  In our design the absorption cross 
section can be enhanced by the use of multiple coupled quantum wells; however this is 
limited to a factor of ~102 due to technical difficulties in maintaining a fixed superlattice 
period (well-barrier thicknesses) for superlattices above a hundred periods. 
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7 Theoretical Analysis of Imaging with Entangled States 
 
The objectives of the QSP program as 
outlined in the BAA are shown again (for 
convenience) in Table 14.  The first four 
objectives involved the use of analysis to 
certify that our approach to imaging 
satisfies the first four criteria shown in 
Table 14.  Additionally, we sought to 
devise and carry out an experiment that 
serves as a “proof of concept” for the 
phenomenology we intended to exploit in 
our sensor concept.  The results of these 
endeavors have been recounted in 
previous sections.  We have also made 
comparisons of the resolution and signal 
to noise ratio (SNR) that are available 
from our proposed quantum sensor as 
opposed to a classically based analog.  
These results are also presented above.  In 
the present section, we discuss the 
analysis that has been carried out to 
establish compliance (or non-compliance, 
as the case may be) of our proposed 
imaging sensor scheme. 
 
7.1 Interaction with the Target 
The fact that non-classical states do not 
become completely classical upon 
interaction with a target has been verified 
both theoretically and experimentally in many calculations and experiments carried out at 
UMBC and other institutions.  This point has thus been well established.  It is also shown 
in the calculations performed under this contract that are shown in Appendix A.  In the 
simplest case non-classical states are preserved if the interaction with the target is 
lossless. In the case of loss, especially large loss, the complete state that scatters from the 
target may, in fact, be classical; however, by post-selection, i.e. by judicious choice of 
detection, a non-classical state may be detected.  The post-selected state can produce the 
same results as the non-classical state in the lossless case, but at a reduced detection rate. 
 
7.2 Resolution and Energy Propagation 
The program undertaken was to study ghost imaging with entangled photons.  A number 
of theoretical and experimental studies of two-photon ghost imaging had been done at 
UMBC.  These studies had focused on studying imaging and interferometry in various 
configurations to test and expand the underlying theory descriptive of various situations 
in a laboratory setting.  They concentrated on improving visibility and counting rates.  
The questions of whether ghost imaging could be used in sensor technology over long 

Table 14  QSP Program Objectives 
From the BAA. 
The photon's interaction with the target 
doesn't cause the non-classical state to be 
entirely lost. 
The quantum sensor can resolve two targets 
at a closer spacing than is possible with a 
classical sensor. 
The energy that travels between the quantum 
sensor and the target propagates at the 
single photon wavelength 
The quantum sensor suffers a loss of 
sensitivity and resolution that is no worse 
than the loss suffered by a classical sensor 
under the following conditions: 

 The transmission medium between the 
sensor and the target absorbs or 
diffusely scatters photons. 

 The target is in a daylight environment. 
 The target scatters incident photons non-

uniformly over 4π steradians 
Make a specific calculation of the resolution 
improvement achieved with a 3 dB loss in the 
transmission medium and a resulting 26 dB 
signal to noise ratio. 
An experiment whose goal is to provide 
additional validation of some results 
demonstrated analytically under the Base 
effort, particularly if the relevant theoretical 
base is underdeveloped.  The goal of a 
proposed experiment may be to determine 
results beyond the scope of the Base effort.   
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distances and with large losses had not been explored prior to the advent of the QSP 
program. 

On the QSP program, we began our study by looking at the resolution using the 
Rayleigh criterion.  This criterion is simple and useful since it was assumed that the 
targets were of approximately equal brightness. Furthermore, we examined cases of 
imaging beyond simply distinguishing two targets.  We examined the resolution of non-
degenerate spontaneous parameteric down-conversion.57  This was stimulated by the 
question of whether the use of a long wavelength photon to illuminate the target while 
retaining a short wavelength photon as a reference would yield imaging as though the 
target was illuminated by the short wavelength photon.  It was shown that for sensors this 
was not the case.  It was shown that the resolution was determined by the wavelength of 
the light that illuminated the target.  This analysis is presented in detail in Appendix B. 

The question posed by the third objective listed in Table 14 was interpreted as asking 
whether entangled photons behaved as single photons.  It was well-known that the 
propagation of each photon was determined by Maxwell’s equations.  However, 
entangled states are more strongly correlated than classical states and can provide effects 
that are not possible with classically correlated states.  For two-photon ghost imaging 
entangled states have visibility much greater than can be obtained with classical states. 

We were led to examine states with more entangled photons.  Starting from our 
previous work on ghost imaging with three photons,58 we have examined resolution 
issues for ideal cases. This work will be summarized here and is shown in greater detail 
in Appendix C.  One case we examined was that in which one photon is sent to the target 
while two photons are retained in the laboratory. Scattered photons are collected and 
three photon coincidences are measured. The detection measurements are single photon 
detections. We have found that for the case in which all three photons have different 
wavelengths there is no improvement in the imaging. When the two retained photons are 
degenerate (and measured jointly by a two-photon absorption material), that is, they have 
the same wavelength, and the Airy disk has a radius half of what it would have with a 
single photon of the same wavelength as each of the retained photons. In this case no 
improvement in resolution was found, however.   

In the case in which two photons illuminated the target and one was retained in the 
laboratory, more promising results appeared with respect to achievable resolution.   
These were generalized to the multi-photon case.59 We analyzed the spatial resolution 
improvement using three-photon imaging process beyond the Rayleigh diffraction limit. 
Our analysis showed that with the entangled state 2,1 , where one photon is non-
degenerate (λ2) while the other two photons are degenerate (λ1), the ability to resolve two 
point sources in the object plane can be improved by a factor of two by sending two 
degenerate photons to the target while keeping the non-degenerate and imaging lens in 
the lab.  Referring Figure 48 below, we showed that an image was formed if the Gaussian 
thin lens formula 
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where d1′ >>d1. 
The scanning detector D2 may be replaced by a CCD detector and the detector D1 is a 

two-photon bucket detector.  A central assumption of this calculation was that the 
degenerate photons illuminate the same area of the object.  This would not be a problem 
if we only wish to distinguish two large objects, but does present a problem for imaging.  
The illuminated area must be small on the scale over which the target reflectivity changes 
appreciably.59 

We generalized this scheme to the entangled state N ,1 and showed that a factor of N 
can be achieved for the spatial resolution enhancement which cannot be obtained in 
classical optics.  This conclusion is borne out in the following expressions. 
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Note that this expression is qualitatively similar to what one would expect for the 
Rayleigh criteria, however, the wavelength λ1 is divided by N, leading to proportionately 
improved resolution.   

We concluded that to realize such an imaging system with an N-photon bucket 
detector, a number of conditions should be satisfied.  First of all, the N degenerate 

 

Figure 48 Schematic of quantum imaging with entangled photons in state (a)   and (b)  .  
The distance from the crystal output surface to the object is  ,  is the distance from the 
object to the two-photon detector ,   is the distance from the crystal output surface to the 
imaging lens with focal length f . z1  is the length from the imaging lens to the single-
photon detector  D2 , which scans the coming signal on its transverse plane. “C.C.” 
represents the joint-detection measurement. 
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photons should be delivered to the same point on the target.  Secondly, the use of the 
bucket detector requires that all N degenerate photons scattered be detected in a single 
temporal counting window.  We also pointed out that the system is very sensitive to the 
levels of optical path loss that will typically be present in a standoff imaging system. 
Although the loss of the vast preponderance of degenerate photons would not affect the 
quality of the image, it does have an effect on the counting rate, or equivalently, the 
exposure time.  While not an explicit figure of merit in the go/no-go criteria for the 
program, the time required to form an image is important for a tactical imaging system 
and can certainly spell the difference between the viability and non-viability of such a 
system. 

To overcome the issue of loss mentioned above, we were motivated to study the optical 
properties of other three-photon states entangled in time-energy and space.  It is well 
known that for N-photon states with N ≥ 3, there are many different classes of entangled 
states. In tripartite systems two classes of genuine tripartite entanglement have been 
discovered, namely, the Greenberger-Horne-Zeilinger (GHZ) class and the W class.  The 
GHZ-like entangled state 1,1,1  and the W-like state 2,1  were studied during the 
course of the QSP Program.60  As expected the GHZ-like state becomes a randomly 
mixed state if one photon is lost while the W-like state retains some two-photon 
entanglement if one of the degenerate photons is lost. 
 
7.3 Impact of Transmission Impairments 
Broadly speaking the transmission impairments cited in Table 14 above fall into two 
categories, noise processes and losses.  The noise processes would include such things as 
background counts from external sources such as the sun and dark counts in one or more 
of the detectors.  These processes produce counts in the detectors occurring at random 
times with respect to the counts produced by the entangled photons themselves.  Our 
prospective imaging system produces counts by measuring correlations between 
entangled photons produced at the source and incident on detectors that are spatially 
separated from one another.  The arrival times of the entangled photons on the detectors 
will have a well-defined temporal relationship that will enable them to be distinguished 
from detector responses arising from noise processes which do not have such a precise 
relationship.  Therefore, one may say that, not only is it expected that the performance of 
an imaging system based on entangled states is not degraded with respect to a classical 
imaging system; the resiliency of the system in the face of noise is expected to improve 
with respect to that which can be expected from a more conventional imaging system.  
The trade one must make as the frequency of noise counts becomes higher and higher 
compared to the frequency of signal counts is that the timing that defines correlation must 
become more and more precise, which adds complexity to the system.  Unfortunately, 
resiliency in the face of large optical path losses appears to be rather less encouraging. 

Large photon losses appear, in fact, to be fatal to the use of entangled states at the 
photon level.  While the correlation measurements are effective in eliminating noise and 
the losses do not affect the results of the imaging, they do affect the counting rate in such 
away as to make the required time to obtain an image unacceptably long.  To see this, 
consider the fact that in the case of GHZ states discussed previously, we know that one 
must propagate N photons to a target, and, ultimately, to a detector in order to recognize 
an N-fold gain in resolution.  Whatever the various sources of loss may be, we can expect 
that, in a standoff imaging system, the probability of detection Pdet, of any one photon 
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given its launch from the source will be of order 10-10.  Furthermore, the fact that the 
entangled photons, once launched, propagate independently to the target and detector 
suggests that the probability that all N of them will reach the detector is NNP ⋅−= 10

det 10 .  
Now, if N = 2 (that is a twofold resolution increase…a total of three entangled photons 
are created of which two are propagated to the target and one is retained locally), we 
need to launch 1020 entangled photon “triplets” per second in order to collect one 
“triplet” at the detectors per second.  At f = 200THz ( JE THz

photon
21200 10133 −×= ) this 

amounts to a total source power of approximately 40 W, if entangled triplets are 
generated with unit efficiency.  Of course the efficiency will be much much less than 
unity in practice.  For N = 3 we would need about 530 GW of power so we can see that 
the scaling with loss is prohibitive for expected values of sensor standoff loss and values 
of N going up from N = 2 which are of interest to the QSP program. 

As mentioned above, whereas a loss of a single photon from a GHZ states means a 
loss of entanglement so that no signal may be realized from the detection of the 
remaining photons, some entanglement is maintained with W-states.  However, we have 
concluded that, despite their increased tolerance to loss compared to their GHZ 
counterparts, W-states nonetheless suffer from the difficulty that the total probability for 
detection of a group of photons scales exponentially with the number of photons in that 
group.  In the case where we detect only a subset (N photons) of our original group (M 
photons), we can also derive some advantage from the fact that any combination of our 
original M photons taken N at a time will generate a correlation.  However, as long as M 
and N are relatively small, this gain will pale in comparison to the substantial losses 
added with each additional required photon in a practical standoff sensor system as 
shown above.   

One possible way around this problem was to examine the case in which the target 
was illuminated by intense beams that were entangled with a single reference photon that 
acted as a trigger for the correlation measurement.  In this case, the single photon would 
be retained near the source and so would not be subject to loss.  There were two 
questions to be answered here.  First, as discussed above, if we send out a very large 
number (M) of photons and may detect correlations between any small combination (N in 
number) of them, we would expect our detection rate to go up.  Secondly, and perhaps 
more obviously, the notion of an entangled beam implies that we will be able to generate 
more photons per unit time than would be the case with GHZ or W-states.  The question 
is how much greater?  We presented a preliminary work modeling so-called entangled 
beams in a previous report and a more complete version of this analysis is attached (in 
Appendix D) to this final report.  With respect to the second question, we examined the 
model of one particular scheme for generating entangled beams in detail for its temporal 
correlations. We estimate that under ideal conditions, we can only get a generation 
frequency of about 29105 cms ⋅× .  Consequently, in the high loss environment 
envisioned for the quantum sensor this scheme will not work.  Currently, there is 
experimental work being carried out at UMBC on schemes in which much higher fluxes 
of up-converted photons may be generated.  However, because of the intensity of the up-
converted beam, a different detection scheme is required.  With respect to the first 
question, we have determined that the nature of the entanglement in beams is rather 
similar to that in the GHZ states, for example, so that entangled states are generated (and 
must be detected) in groups of N.  This means that it is not possible to drive up the 
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“combinatoric” gain to very high levels via the use of entangled beams (that is, by 
detecting any combination of N photons from a very large number M of launched 
photons).  However, it is the case that one can generate these groups of entangled 
photons at significantly greater rates.  That said, the scaling of the power requirements 
with N quickly derived above indicates that one will not reach the required flux level as N 
approaches 10 by increasing power since the launched power must increase by a factor of 

det1 P  (a big number in standoff detection systems) each time a photon is added to the 
size of the entangled group in order to maintain a given rate of detection.   

Therefore we have concluded that while we have shown states and conditions for 
which the sought after ten-fold increase in resolution appears to be possible in principle, 
these states and conditions give performance that is significantly degraded with respect to 
a conventional imaging system with path loss that will be typical of a standoff imaging 
system.  Conversely, while we found that loss could be tolerated for GHZ states where 
one photon was propagated to the target and N were kept back, it was determined that no 
advantage in resolution could be gained under this condition.  Finally, while W-states 
offer an advantage insofar as the entanglement of the group is not completely lost with 
the loss of one entangled photon, ultimately the power requirements and loss tolerance 
for a given level of N is nearly identical to that of GHZ states.  So, while states and 
conditions have been found that satisfy each of the requirements at various times and 
under various conditions, no one set of states and conditions satisfies the requirements 
simultaneously, which is of course the real requirement of the program. 
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8 Experimental Study on Entangled Triphoton Beams 
Entangled multi-particle states of 3≥n have attracted a great deal of interest because of 
their roles in probing the foundations of quantum theory1,61,62 and their potential 
applications in quantum information processing.63,64  In the past decades, experimental 
efforts in the realization of GHZ65 and other multi-photon states66 have led the study of 
multi-particle ( 3≥n ) entanglement to a new stage.  

Beyond the multi-photon state at low light levels, the research presently reported 
studies entangled multi-photon beams.  The entanglement is no longer restricted to 
single-photons but is achievable between high intensity beams.   The objective of this 
part of our QSP research (undertaken in parallel with theoretical efforts at UMBC) is 
aimed at the generation of entangled multi-photon beams and the study of their temporal 
and spatial correlation for possible quantum sensor applications.   

An experimental realizable true triphoton EPR state was proposed by Keller, et al.67 
Keller, et al., calculated a three-photon state via optical nonlinear interaction. In an 
optical medium, which has significant second-order nonlinear susceptibility, ( )2χ , a laser 
beam, namely the pump, produces two pairs of signal-idler photons in the process of 
spontaneous parametric down-conversion (SPDC).68  By up-converting the two idlers 
from two individual signal-idler pairs, the up-converted photon along with the remaining 
two signal photons form an entangled tri-photon EPR state. To achieve both SPDC and 
up-conversion, two sets of phase matching conditions must be satisfied in the nonlinear 
interaction simultaneously: 
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where the subscript p stands for the pump, 1 (signal) and 1' (idler), 2 (signal) and 2' 
(idler) denote the signal-idler  pairs of 1 and 2, and 3 denotes the up-converted photon.   
Achieving the three phase-matching conditions simultaneously within a nonlinear 
material has been a major challenge in crafting an experimental realization.  It is the use 
of a hexagonally poled 2-D photonic crystal of quasi-phase-matching69 that has made it 
possible to achieve both SPDC and up-conversion and to generate the reported triphoton 
EPR state.  

To analyze the triphoton state, we start with the Hamiltonian of the time dependent 
interaction 
 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ..
2 2132211

20 CHEEEEEEEEErrdH
V

ppI +++= ∫ +
′

+
′

−−
′

−+−
′

−+rrχ
ε

,  (36) 

 



 
 

65 
 

where V is the interaction volume and ( )( )rr2χ  characterizes the spatial modulation of the 
second-order nonlinear susceptibility. The entangled triphoton state can be calculated 
from the third-order perturbation theory, 
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(37) 
 
where we have approximated the pump field as CW, classical, and non-depleted, while  
treating the signal, idler and up-converted fields quantum mechanically with multiple 
modes.  The constant vector, G

r
, arising from the 2-D periodically modulated ( )( )rr2χ , 

makes the quasi-phase-matching possible.69  The wave vector δ-function in Eq. (37) 
includes two sets of idealized quasi phase-matching: 
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where 0,1G

r
 and 1,0G

r
 are the reciprocal-vectors of the 2-D hexagonally poled photonic 

crystal as shown in Figure VII.1(b). The frequency δ-function, ( )3212 ϖϖϖωδ −−−p  is 
the result of the time integral in the perturbation which has been taken from ∞− . 
Examining Eq. (37), the non-factorizable spectral function of the state ties photons 1, 2, 
and 3 together as a typical EPR state.  In Eq. (37), the energy and momentum of neither 
photon is determined.  But, if one of them is measured with a certain value, the sum of 
the other two is completely determined, and vice versa. 
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Y
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Figure 49 (a) The domain structure of a hexagonally poled lithium tantalate (HexPLT) 
after a slight etch in acid. (b) The corresponding reciprocal-vector space which has the 
six-fold symmetry property but with rotation by 90o. 
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The 2-D ( )2χ  photonic crystal used in the experiment  is a hexagonally poled LiTaO3 
(HexPLT wafer of mmmmmm 5.01515 ×× .70  Figure 49(a) shows a schematic picture of 
its domain structure. The nearly circularly inverted domain (with ( )2χ− ) distributes in a 

( )2χ+  background periodically with ma μ95.0= .    This specific design realizes the two 
sets of quasi-phase-matching in Eq. (35) simultaneously.  The phase-matching 

00,12,12,1 =−−− ′′ Gkkk p
rrrr

 for SPDC is in the 0,1G
r

 direction.  The other phase-matching 

01,0213 =−−− ′′ Gkkk
rrrr

 for up-conversion is in the 1,0G
r

 direction. Reciprocal vectors 0,1G
r

 

and 1,0G
r

 arise from the hexagonal modulation of the second-order susceptibility. Fig. 
49(b) illustrates schematically the reciprocal-vectors of the hexagonally poled photonic 
crystal.  Due to the six-fold symmetry in the reciprocal vector space, the depicted 0,1G

r
 

and 1,0G
r

 have the same vector magnitude and the same Fourier component coefficients. 
Besides achieving phase matching, another big advantage for using a HexPLT crystal is 
the ability of utilizing d33, the largest component of the ( )2χ  tensor for LiTaO3. This 
makes the quasi-phase-matched nonlinear interaction occur with very high efficiency.  
For example, by using a few hundred milliwatts of pump power, gains may be achieved 
in the range from 14 to 16 and the spontaneous process can enter the stimulated regime.  
Due to the use of d33, the signal-idler pair as well as the up-converted fields and the pump 
are all polarized along the optical axis of the crystal. 

Achieving the energy-momentum δ-functions in Eq.(37)  is only half of the story for 
the study of quantum entanglement. To complete the story, we must examine the space-
time EPR correction function.71 Experimentally, we have successfully measured the 
third-order temporal correlation function of the three-photon system and observed a 
typical EPR correlation in time.  The third-order correlation function is given by 
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Here, ( )321 ,, τττΨ , the probability amplitude of annihilating photon 1, photon 2, and 
photon 3, respectively, at (t1, z1), (t2, z2) and (t3, z3), is named as the effective three-
photon wave function, or triphoton. In Eq. (39) czt jjj −=τ , j = 1, 2, 3, with tj as the 
registration time of the jth photo detector and zj as the longitudinal coordinate of the jth 
photo-detector along the jth optical path. The calculation of ( )321 ,, τττΨ  is 
straightforward, namely 
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where ( )321 ,, kkkf  formally denotes the realistic longitudinal phase-matching function in 
SPDC and up-conversion.   To complete the integral, we take frequency de-tunings νm as 
variables, where mm νωω += 0   (m=1,2,3) and 0

mω   is the corresponding central 
frequency of mω , based on first-order dispersion; and use the frequency δ-function, i.e., 

( )123 ννν +−= , to reduce the integral from 3-D to 2-D. The triphoton is then simplified 
as 
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(41) 
 

where kjjk τττ −=  and Dmn = 1/um - 1/un with um (un) the group-velocity of the mth (nth) 
field. 

Now, we introduce variables +ν  and −ν  with ( ) 221 ννν +=+ , ( )21 ννν −=−  and 
apply D31' = D32'. Eq. (41) can then be further simplified as 
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where functions sinc(ν1D11'/2) and  sinc(ν2D22'/2) have been used to determine the upper 
and the lower limits of the integral.  Taking into account realistic experimental 
parameters, Eq. (42) can be easily integrated numerically.  In the extreme case, when we 
take the integral limits of ν+ and ν- infinite, the integral in Eq. (42) yields 
 

( ) ( ) ( )32311332313231 ,, TTlDTT −−+∝Ψ ∏ ′ δττ   (43) 
 
where Π(x,a) = 1 for ax ≤≤0  and vanishes otherwise.  Comparing the width D31'l of the 
Π function along 3231 ττ +  and the δ-function in 3231 ττ − , we would expect a 
nonsymmetrical tri-photon wave function.    
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Figure 50 A numerical simulation of the third-order correlation function, ( )( )3231
3 ~,~ ttG . 

Taking into consideration the limited response time of the photon counting detectors 
and their associated electronics, the measured ( )( )3231

3 ~,~ ttG , for fixed z1, z2 and z3,  is thus 
determined by  
 

( )( ) ( )∫ Ψ=
ct

dtdtttG 2
323132313231

3 ,~,~ ττ   (44) 

 
where 31

~t  and 32
~t  are the average times within   ctt ±31

~  and ctt ±32
~ .  We have assumed 

all three photo-detectors and their associated electronics have the same limited response 
time, or uncertainty, tc.  The sub-index tc of the integral denotes a time average in the 
neighborhood of ctt ±31

~  and ctt ±32
~ .  A numerical simulation of ( )( )3231

3 ~,~ ttG  is 
provided in Figure 50.   The simulation is based on Eq. (42) and Eq. (44) with true 
experimental parameters.   

The experimental setup is illustrated in Figure 51.  The pump is a ~15 nanosecond 
pulsed Q-switched Nd:YAG laser with tunable repetition rate from a few kHz to 200 kHz.  
A lens with focal length f = 15cm focuses the pump beam into the thin LiTaO3 crystal 
( mmmmmm 5.01515 ×× ).  When the e-polarized pump beam of nm532=λ  is incident 
along the 0,1G

r
 direction and the temperature of the HexPLT crystal is set at 178oC, the 

signal, which is centered at nm873=λ , and the idler at nm1362=λ  are collinearly 
generated along with the pump; while the up-converted beam, which is centered at 

nm681=λ , emits 5o aside from the pump, is governed by the quasi-phase-matching 
conditions of Equation (38).  To block the remaining pump beam, mirrors (HR532) and 
band blocking glass filters (GF) were applied. A 50/50 beam splitter (BS) was used to 
split the collinearly propagated two signals while the two idlers were up-converted to 

nm681=λ .   
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Figure 51 Schematic experimental setup for three-beam temporal correlation 
measurement. 

The separated two signals ( nm873=λ ) were then detected by photon counting 
detectors D1 and D2, respectively, while the up-converted photon ( nm681=λ ) triggers 
photon counting detector D3.  Bandpass spectral filters (BPF) are used for passing the 
expected wavelengths to the photo-detectors.  The registration time differences of 

1331 ttt −=   and 2332 ttt −=  for each three-fold joint photo-detection event are 
recorded.  The data is analyzed and reported as a 3-D histogram: the number of three-fold 
joint photo-detection events against 31t  and 32t , which corresponds to ( )( )3231

3 ~,~ ttG  with 
fixed values of z1, z2 and z3. 

The experiment was implemented in the high-gain stimulated region.  The three 
entangled beams are observable easily by the human eye, which indicates a Fock state 
with occupation number n >> 1.  The correlation function ( )3G  was measured in the 
photon counting regime and neutral density filters were used to attenuate each generated 
beam down to single photon level.  Although the use of neutral density filters may 
destroy EPR correlation of a multi-photon source in the spontaneous regime, we have 
found that in the stimulated regime, the δ-function-like spectrum of the state, which gives 
rise to the EPR correlation, remains unchanged.   The physics is rather simple.  In the 
spontaneous regime, each generated tri-photon may be characterized with a different 
initial phase, i.e., randomly distributed in phase space, which corresponds to random 
creation times of the triphoton.  If one selects subsystems from different tri-photons for a 
joint detection event, the time correlation will be lost.  In the stimulated regime, however, 
the modes are coherently excited.  Roughly speaking, all generated tri-photons are in the 
same state, i.e., condensed into one point in phase space.   There is no chance to pick up 
``wrong" subsystems for a joint detection event.  The theory has been experimentally 
verified recently in our laboratory.72   The experimental observation, as well as the 
theory, will be published separately. 
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Figure 52 A typical ( )( )3231
3 ~,~ ttG  measurement. 
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Figure 53 (a) Projection of ( )( )3231
3 ~,~ ttG  onto axis t32. (b) Overlook at  ( )( )3231

3 ~,~ ttG . 

 
Figure 52 shows a typical measured temporal correlation function of  ( )( )3231

3 ~,~ ttG .  
The tri-photon is located within a very narrow time window as shown. To ensure that 
each measurement of the field occurs at the single-photon level, we adjusted the ND 
filters until the single photon counting rates reach ~30 counts per second 
( 3103.2000,1330 −×≈  per pulse).  Figure 53(a) shows the projection of ( )( )3231

3 ~,~ ttG  
onto axis t32 (or t31).  The width of the projection gives ~1ns, which is less than that of the 
measured width of the subsystems as well as the pump pulse (~15ns).    The most 
interesting observation of the experiment is illustrated in Figure 53(b).  The striking 
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feature of this measurement is the time-squeezing along (t31 - t32), which is in good 
agreement with our numerical simulation of Figure 50, a convincing observation of the 
tri-photon wave packet.  

The experimental setup for the spatial correlation measurement looks similar to that 
of the temporal correlation, however, the measurement is directly related to the spatial 
resolution of three-beam ghost imaging.   Figure 54 is a schematic of one of the 
experimental setups.  In fact, this setup is a ghost imaging experiment.  As a result, we 
refer to this scheme as “ghost imaging of 2 +1 beams.”   A double-slit, which plays the 
role of the object-target, is inserted in the entangled beams 1 and 2 with degenerate 
wavelengths nm873=λ .  The point photo detector D2 is may be scanned transversely, as 
indicated by the double arrowed line.  The measurement of D2 is in the far-field Fourier 
transverse plane.    A sum-frequency (second harmonic for degenerate wavelength) 
device is applied to up-convert the wavelength to nm5.436=λ .   The use of a nonlinear 
sum-frequency serves for the purpose of ensuring that the entangled two beams of 

nm873=λ  come from the same point of the target.   A photo-detection event of D1 at 
nm5.436=λ  indicates the simultaneous measurement of two nm873=λ  beams.  A 

coincidence measurement between D1 and D2 effectively achieves a three-beam joint 
detection.   Our theoretical study has indicated that the spatial resolution of the ghost 
imaging will be enhanced by a factor of two, beyond the classical limit (see Section VI of 
this report).  Corresponding to the theoretical prediction, in this measurement we expect 
to observe a far-field double-slit interference-diffraction pattern with half pattern width 
and twice interference modulation.  According to Fourier optics, this result means an 
enhanced twice spatial resolution on the ghost imaging plane.   Unfortunately, we have 
not been able to obtain publishable measurement data before the submission of this 
report.  The experimental study will continue until achieving the goal of this 
investigation. 
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Figure 54 Schematic experimental setup of three-beam ghost imaging. The observed 
ghost interference pattern indicates that the ghost image has twice spatial resolution 
comparing with a classical image of the target (double-slit). 
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9 Suggestions for Further Work 
In principle, the resolution analysis discussed above should be extended to a quantum 
treatment of hypothesis testing.15  This could be performed for the case of an N = 11 
photon state, for instance, given proper normalization of the spatial part of the wave 
function, but in the case of entangled beams, the problem may be intractable.   However, 
it would be important to at least compare error probability versus separation between 
point targets relative to the Rayleigh limit, and resolution versus SNR using Helmstrom’s 
quantum formalism to our treatment in which we incorporated the quantum mechanically 
derived point spread functions into the classical model for the binary hypothesis test.  
This would test the validity of our results in terms of the comparison of SNR required for 
a given resolution between the entangled photon and baseline sources. 

There are several aspects of the SNR calculations that need further study.  One is the 
validity of a Fano factor to represent sub-Poissonian statistics in the case of entangled 
photons or beams.  We used this factor in our initial studies of the SNR comparison to our 
original baseline, but abandoned it upon establishing the new baseline and employing the 
intensity interferometer approach to SNR.  If this factor is valid, then it could establish an 
additional advantage to entangled photon ghost imaging, assuming that such a source 
yields an approximate number state. 

Another area warranting further study is incorporating a factor in the SNR calculation 
to represent the degradation in visibility as a function of the output beam brightness.   
This would allow us to determine an upper limit to the useful power one could use for a 
remote ghost imaging sensor. 

Perhaps the most critical need for further work remains in the experimental area.  
Now that NGC has established its quantum imaging setup with the detection of second 
order correlation, it should (in collaboration with UMBC) continue to embark on ghost 
imaging experiments.  These first should be performed with two entangled beams, and 
the predictions12 for the location of the image plane, as given by the thin lens equation, 
and the resolution in terms of the ratio of the output wavelengths, should be tested.  
Subsequently, once a suitable source is identified, the experiments should be extended to 
three entangled beams.   This would enable us to demonstrate the ability to obtain 
resolution enhancement in ghost imaging.  The most important test would be a 
measurement of resolution for a diffusely reflecting object.  If resolution enhancement is 
still observed it would show that the use of entangled beams offers some degree of 
immunity to the loss of a portion of the entangled photons.  Once such measurements are 
performed on a lab bench we would return to the original notion of using our atmospheric 
optical path to perform ghost imaging with a remote target in free space, subject to a 
large degree of turbulence.  This would provide the most convincing preliminary 
evidence that quantum states could provide an advantage for an imaging sensor in a 
militarily relevant environment.  The generation of ghost images with high flux beams of 
entangled photons as well as the realization of ghost imaging with tri-photons (and 
resultant expected enhanced resolution) are both areas where further study is warranted. 

Finally, the development of sources (whether based on hexagonally poled lithium 
tantalate as developed at UMBC or upon aperiodic gratings as conceived at NGC or on 
some other technology) will clearly be central to progress in the development of sensors 
based on entangled states.  UMBC has also provided a prospective coupled quantum well 
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structure whose multi-photon absorption dynamics may be further studied 
experimentally. 
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List of Acronyms 
 
AlInAs:  Aluminum Indium Arsenide (a III-V compound semiconductor) 
AlSb:  Aluminum Antimonide (a III-V compound semiconductor) 
APD:  Avalanche Photo Diode 
AR:  Anti-Reflection 
ARL:  Army Research Laboratory 
BAA:  Broad Agency Announcement 
BD:  Bucket Detector 
BPF:  Band Pass Filter 
CAR:  Coincidence to Accidental Ratio 
CM:  Cold Mirror 
CW:  Continuous Wave (as opposed to pulsed) 
DARPA:  Defense Advanced Research Projects Agency 
EPR:  Einstein, Podolsky and Rosen 
ETPA:  Entangled Two-Photon Absorption 
FFT:  Fast Fourier Transform 
FPA:  Focal Plane Array (an optical detector) 
GaAlAs:  Gallium Aluminum Arsenide (a III-V compound semiconductor) 
GaAs:  Gallium Arsenide (a III-V compound semiconductor) 
GaInAs:  Gallium Indium Arsenide (a III-V compound semiconductor) 
GaInAsP:  Gallium Indium Arsenide Phosphide (a III-V compound semiconductor) 
GHZ:  Greenberger-Horne-Zeilinger (a class of entangled states) 
GLAD:  General Laser Analysis and Design (software package) 
GTLE:  Gaussian Thin Lens Equation 
HexPLT:  Hexagonally Poled Lithium Tantalate (LiTaO3…a non-linear crystal) 
InP:  Indium Phosphide (a III-V compound semiconductor) 
IR&D:  Internal Research and Development 
KTP:  Potassium Titanyl Phosphate (a non-linear crystal) 
MAP:  Maximum a priori Probability 
MBE:  Molecular Beam Epitaxy 
MCT:  Mercury Cadmium Telluride (HgCdTe, an infrared detector material) 
MTF:  Modulation Transfer Function 
ND:  Neutral Density (describes an element whose loss is invariant with wavelength) 
NEC:  Noise Equivalent Counts 
NGC:  Northrop Grumman Corporation 
NGES:  Northrop Grumman Electronic Systems (a sector of NGC) 
Nd:YAG:  Neodymium doped Yttrium Aluminum Garnet Crystal (a laser gain medium) 
NLO:  Non-Linear Optical 
NOON:  A class of entangled states ( NN ,00, ) 
ONB:  Ortho-Normal Basis 
OPG:  Optical Parametric Generation 
POVM:  Positive Operator Valued Measures 
PPLN:  Periodically Poled Lithium Niobate (LiNbO3) 
PSF:  Point Spread Function 
QPM:  Quasi-Phase Matched 
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QSP:  Quantum Sensors Program 
SFG:  Sum Frequency Generation 
SHG:  Second Harmonic Generation 
Si:  Silicon 
SNR:  Signal to Noise Ratio 
SPDC:  Spontaneous Parametric Down-Conversion 
SPIE:  Society of Photo-Optical Instrumentation Engineers 
STO:  Strategic Technology Office 
THz:  Terahertz (1012 cycles per second) 
TPA:  Two-Photon Absorption 
UMBC:  University of Maryland, Baltimore County 
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Appendix A   Effect of Scattering on Ghost Imaging 
 
We briefly discuss ghost imaging to provide a concrete model of our general discussion.  
In Figure 55 we illustrate the essential features of ghost imaging.  The source S emits 
pairs of entangled photons, one photon is detected in a focal plane array (FPA) and its 
twin is detected by the bucket detector BD after it scatters off the object O.   In Figure 55, 
we have shown two pairs: for the first pair, one photon is detected at A and its twin a 
scatters at α, for the second pair, one photon is detected at B and its twin b scatters at β.  
The detection in the FPA determines the transverse wave vector of the photon within the 
limits set by diffraction.  If the there is a coincidence with the firing of BD and A, we 
know that the twin has scattered from α.  Recall that timing discrimination is such that 
only one pair at a time can be detected. If the twin is not detected there is no coincidence.  
Similarly for B and b.  Now suppose that a pair A-a is emitted and that between S and O 
the photon a is scattered, for example by fluctuations in the index of refraction, so that it 
scatters off of β and is detected in BD.  In this case when A fires we get an error although 
the entanglement has not necessarily been destroyed.  Note that if there is scattering 
between O and BD no error is introduced because the detector BD does not discriminate 
between pairs.  We now want to give a general model for this type of process.  

 

A 

B 

 b 

 a 

S 

BD 

 O 

 β 

 α 

Figure 55 Schematic of ghost imaging system for modeling of scattering effects on 
entangled photons. 

 
A pure state of a bipartite system, a system composed of two subsystems, can 

always be written in the form  
 Ψ = cj φ j χ j

j
∑  (45) 

where  { },...1, =jjφ and { },...1, =jjχ  are orthonormal bases of states (ONB), and 

| cj |2
j

∑ =1.  The state is separable if only one cj  is non-vanishing, otherwise, the state is 

entangled.  The summation is symbolic and may be an integral.  For example, the wave 
function for a bi-photon produced by a monochromatic pump of angular frequency ω p  
may be written as  
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( ) κϖϖκϖκϖκϖ
rrr

−−=Ψ ∫ ∫ ,,,2
pcdd                    (46) 

where { }0,, >ϖκϖ
r is a set of one photon states with angular frequency ω , wave 

number, κκω rr
+−= 2

2

2
ˆ

c
ek z  and normalization 

( ) ( ) ( )κκδϖϖδπκϖκϖ ′−′−=′′ rrrr 32,, . 
 
Simple Model of Measurement 
Now suppose that the subsystems are transformed separately so  
 

 
Ψ → ′Ψ = cj ′φ j ′χ j

j
∑

′φ j = U φ j ′χ j = V χ j

 (47) 

 
where U and V are unitary transformations, then ′Ψ  is entangled and has the same 
degree of entanglement as Ψ .  This follows from the fact that unitary transformations 
map ONB onto ONB.   Suppose we want to obtain information about the set 

′χ j , cj ≠ 0{ }  (in ghost imaging, the second subsystem contains information of interest 
about the object).  To do this we make projective measurements of correlations between 
the two subsystems.  The set of projections is given by  
 
 Pαβ = α α ⊗ β β{ } (48) 
 
where α{ }and β{ }are ONB for subsystem 1 and 2, respectively.  If we make a 
measurement then the probability of the outcome being (α,β)  is  
 
 pαβ = ′Ψ Pαβ ′Ψ = | cj |2 α ′φ j

j
∑

2

β ′χ j

2

. (49) 

 

If the set α = φα
′{ } we get  

 pαβ =| cα |2 β ′χα

2
=| cα |2 β V χα

2
; (49a) 

   
therefore, we can obtain information about the scattering from the second system.   

More generally, suppose that  
 

 α = bα ′φα + ζα  (50) 
 
where ′φα ζα = 0 , then a measurement with the outcome (α,β) has probability  
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 ′pαβ = bα pαβ + nαβ  (51) 
where the first term is the signal with pαβ  given by Eq. (49a) and the noise term is  
 

 nαβ = | cj |2 ζα φ j
′

2

j≠α
∑ β χ j

′
2

. (52) 

 
In summary, we can obtain information about the scattering of the second subsystem 

by making a correlation measurement with the first subsystem.  If we assume that we 
know the state of the first subsystem perfectly, then we can project the scattered 
subsystem onto a set of known states and determine the probability distributions pαβ .  In 
the ghost imaging case this corresponds to measuring the intensity distribution of the 
light scattered from the object, and the non-ideal case modeled by Eq. (50) corresponds 
to the case that detection in the state ζα  occurs because the twin photon has been 
scattered by atmospheric variation of the index of refraction.  The formulation just given 
in terms of projective measurements is not the most general formulation of the problem.  
It is useful to give the more general picture. 
 
General Model of Measurement 
The simple picture does not illustrate what really happens in laboratories in a clear way.  
We need to take into account the fact that we are not interested in the entire wave 
function.  For example, in order to form an image using a light beam, we only detect part 
of the light coming from the source because it is necessary that the object being imaged 
absorb or scatter some of the incident light.  From the point of view of the detection, 
there is loss. Loss due to absorption simply reduces the counting rate since if one of the 
subsystems is not detected there is no correlation measurement.  The source of noise we 
consider here occurs when scattering generates false correlations such as illustrated in 
Eq. (50). 

To model the measurement process more exactly we consider the most general form 
of measurement based on positive operator valued measures (POVM).  In the simplest 
case, a POVM is a set of positive operators S = {Eα = Mα

† Mα , α = 0,1,K , N}  that satisfy 
the condition  

 Eα
α =0

N

∑ = I  (53) 

 
where I is the identity operator on the Hilbert space, H, of interest.  We have used the 
fact that any positive operator, Eα, can be written as the product of another operator, Mα , 
and its Hermitian adjoint, Mα

† .  For simplicity we label the measurements with discrete 
indices.  The standard projective measurements are a special case of this; however, the 
more general case allows us to model experiments in which, for example, one photon of a 
two photon state is absorbed.  If the state of a system in H is described by a density 
matrix ρ  is measured using the POVM (B.9), the probability of getting the result α is  
 
 pα = tr Eα ρ[ ]. (54) 
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Because Eα  is a positive operator, pα > 0  (note that if pα = 0 then we never get the 
outcome α), and Eq. (48) ensures that the set {pα } is a probability distribution.  After the 
measurement the state of the system is given by  
 

 ρ → ρα =
Mα ρMα

†

pα

, (55) 

  
 A projective measurement corresponds to the case where the set S is composed of 
orthogonal projections, i.e. Eα → Pα  where Pα Pβ = δαβ Pα .  For a POVM, the operators 
Eα  need not be orthogonal.   

We will be interested in the case  
 

 Eα = Aα ⊗ Bα  (56) 
 
where Aα{ } and Bα{ }are POVM that operate on subsystem one and two, respectively.  
Now consider the system to be in the state Eq. (45) and a measurement using the POVM 
S that gives the outcome α.  Then  
 
 pα = Ψ Eα Ψ = cj

*ck φ j Aα φk χ j Bα χk
jk
∑ . (57) 

 
We have absorbed the propagation from the source to the detector into the measurement 
operators.  Eq. (56) is too general for most purposes so we will now specialize it keeping 
in mind the application to ghost imaging.  To this end, we shall assume that the 
measurement outcome α  projects onto a state such that 
 
 φ j Aα φk = δ jka jα . (58) 
 
In the ghost imaging case this corresponds to a measurement in which when one pixel in 
the focal plane array (FPA) is excited with a transverse momentum vector that is 
determined within a small uncertainty.  If we assign an operator  
 
 Aα = ajα φ j φ j

j
∑ , 0 < ajα ≤ 1  (59) 

 

 for N,...,1=α , then A0 = I − Aα
α =1

N

∑ corresponds to no pixel being excited.  The 

summation over j in (59) allows for the fact that there may be some uncertainty in which 
state excites the pixel, in the ideal case there will only be one term.  In an experiment the 
overlap in the transverse momenta corresponding different α is small.  With assumption 
(58), Eq. (57) becomes  
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 pα = | cj |2 ajα χ j Bα χ j
j

∑ . (60) 

 
Now let us assume that  

NBIBIB

NBttB

N

j
j

j

−=−=

===

∑

∑

=

+

2
1

20

,...,1,

α
α

α αχχ

   (61) 

where I2 is the identity operator on the Hilbert space of the second subsystem.  To 
understand the meaning of this last assumption, suppose we only measure subsystem two 
and ignore subsystem one.  Then for N,...,1=α , we get  
 
 Ψ I1 ⊗ B Ψ = | cj |2 χ j t χ j

j
∑

2
. (62) 

 
Comparing this to (A.16)  
 
 pα = | cj |2 ajα χ j t χ j

2

j
∑  (62a) 

 
we see that, because of our assumption about the ajα , information is lost if we do not 
make the coincidence measurement.   This is particularly clear in the ideal case 
ajα = ajδ jα  where only one term appears in (A.16a). The assumption in Eq. (61) may be 
thought of as modeling a bucket detector in the ghost imaging. Recall that the bucket 
detector only tells us if light scattered from an object is detected but gives no details of 
the image. 

Finally, let us see how noise can occur in this picture.  We now assume that 
subsystem two undergoes the transformation in which χ j scatters into the correctly 
correlated state with probability bj , into an incorrectly correlated state with probability 

qr , and a state that is not detected ζ jr , 
 

 χ j → bj t χ j + δtr χ j + ζ jr , (63) 
 
(in general bj may also depend on r).  

In this case we can write  
 

 
 
Bα = bjt χ j χ j t †

j
∑ + qrδtr χ j χ j δtr

†

r , j
∑ , α = 1,K , N . (64) 

 
In the ghost imaging case the second term in (A.19) may be thought of as scattering due 
to index of refraction fluctuations in the path between the source-object-detector.  Now a 
measurement with outcome α occurs with probability  
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′pα = sα + nα , α = 1,K , N

sα = bj | cj |2 ajα χ j t χ j

2

j
∑

nα = qr | cj |2 ajα χ j δtr χ j

2

j ,r
∑

. (65) 

 
In conclusion, we see that the correlation due to the entanglement appears as the signal 
and will be detectable provided the noise is not too great.  In this discussion, we have 
only included noise generated due to scattering effects that may not necessarily degrade 
the entanglement of the pairs detected.  We also wish to emphasize that losses, 
characterized by B0 , only affect the counting rate not the signal to noise ratio. 
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Appendix B  Imaging with Non-Degenerate Bi-Photons 
   
We consider the ghost imaging systems shown in Figure 56. Figure 56 (Upper) is the one 
of interest to us here.  Figure 56 (Lower) is the original ghost imaging configuration. In 
both cases a pump from a laser is incident on a crystal that produces entangled photon 
pairs (bi-photons). One of the photons, called the signal photon, scatters from the object 
and is detected by detector A. A point detector B located in the image plane detects the 
second photon, called the idler photon. The signals from the two detectors go to a 
coincidence counter. The point detector scans the image plane or can be an array of point 
detectors. Detector A is called a bucket detector and collects all scattered light incident on 
it. For the system of interest, the distances Ds and Ls will in general be of order 1-10 km. 
The arm in which the imaging lens is placed differs in the two systems. In Figure 56 
(Upper), a beam expander is used to produce a collimated beam that is aimed at the 

Figure 56 (Upper) Schematic of ghost imaging system analyzed here,  (Lower) 
Schematic of original ghost imaging system. 

object.  The bi-photon source, detectors, lens, beam expander, and coincident counter 
will be located in the laboratory. The image plane is determined by a Gaussian lens 
formula, Equation (83) (below) and the Airy disk depends on the idler wavelength, 
Equation (89). However, the resolution of two points on the object depends on the signal 
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wavelength, Equation (90); consequently, the system discussed here does not lead to 
improved resolution over the classical case. 

This Appendix is organized as follows: first we formulate the coincident counting 
rate in terms of the fields at the detectors, then we compute these fields, finally we 
compute the minimum transverse distance on the target that can be resolved. We shall 
discuss the system shown in Fig. 56 (Upper). 

The coincident counting rate may be written as 
 

( )∫∫∫=
A

ABBAABBA GdttSdtdt
T

C
α

αρ2,1
   (66) 

 
where S is the coincident time window that vanishes unless 0 ≤ tB-tA < T, αA is the area of 
the bucket detector, αB is the area of the point detector, 
 

[ ]ρ)()()()( ++−−= ABBAAB EEEEtrG ,   (67) 
 

ρ is the quantum mechanical state of the electromagnetic field on the output face of the 
crystal and, for j=A or B, ( )jjA trE ,)( r+  is the positive frequency part of the electric field at 

the point jrr  evaluated at time jt and ( )H
jj EE )()( +− = , where the superscript H denotes the 

Hermitian adjoint.  It is convenient to use electric fields with dimensions so that EE H  is 
a photon number flux. We will ignore the polarization of the photons but adding it in is 
not difficult. The detailed expression for the fields at the detectors will be given below. 

For the case in which the output of the crystal is a sequence of non-overlapping 
biphotons, we can write 2

ABABG ℵ= in terms of the bi-photon amplitude 
 

Ψ=ℵ ++ )()(0 ABAB EE ,   (68) 
 

Where 0  is the vacuum state and Ψ  is the bi-photon state vector. 
We begin by computing the field at detector B, 
 

( )∑ −+ =
k

ti
B

Q
B

Beka
V
cE

r

v
ω

2
)(

,            (69) 

 
where c is the speed of light in the atmosphere, VQ is the quantization volume, and the 
operator ( )kaB

r
 destroys a photon with a wave vector k

v
 at point B, and kc=ω .  We 

shall omit the factor QVc 2  in what follows.  It is easy to restore it at the end of the 
calculation. In order to compute the bi-photon amplitude defined in Equation (68), it is 
necessary to express the field in terms of the destruction operator at the surface of the 
crystal. We write 
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( ) ( ) Bti
i

k
iBB ekazgE ωρωκ −+ ∑=

vvv
v

,,,)(
,      (70) 

 
where ( )kai

r
 is the destruction operator for an idler photon of wave number k

r
 at the 

output surface of the crystal, g is the optical transfer function that can be computed using 
classical optics, and  
 

( ) ( )[ ] mnkk
H
mn kaka δδ ',', rr

rr
= .   (71) 

 
In writing out the transfer function, it is convenient to introduce coordinates ρ

r)r
+= zezr , 

where the unit vector ze)  points along the path through the center of the optical system 
and ρ

r
 is a two dimensional vector perpendicular to the path.  Using the thin lens 

formula, one can show that 
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i

r
⎟
⎠
⎞

⎜
⎝
⎛ −− ,exp1 κψω

λ
,                 (72) 

 
where iii Ddz += .  The physics of Equation (72) may be understood by noting that the 
term in square brackets expresses the scattering of a plane wave with wave number 

κκκ r)r)r
+≈+−= zz ekekk 22  incident on a thin lens into a wave with transverse wave 

number iB Dkρ
r .  The output wave then propagates to the detector.  The remaining terms 

in Equation (72) arise from the propagation of the plane wave created at the crystal 
surface to the input face of the lens.  Using a similar analysis, with the object described 
by a transparency function, ( )ρ

r
t ,  it can be shown that  
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where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−=

1

2
2

22
2

2
1

f
f

fD
f
f

P s , and f1 and f2 are the focal lengths of the input and 

output lenses of the beam expander.  We assume that the lens aperture PL is the limiting 
aperture function for the entire system. 
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Bi-photon Imaging 
We are now in a position to compute the bi-photon amplitude.  For the case of interest, 
the system is constructed so that we may take 
 

( ) ( ),,)()(
jjj

tzKi
j teeE jjjj ρ

r+Ω−+ =   for j=A, B.   (74) 
 

Where )(+
je  is slowly varying on the length and time scales, 1/Kj and 1/Ωj.  This allows us 

to make the several simplifying approximations.  For the signal field in arm A of the 
system, we take 
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where we can drop the term Δkz.  Frequency filtering ensures that ssv Ω is sufficiently 
small so that terms containing it can be ignored.  Similarly, spatial filtering ensures that 

ss Kκ is also sufficiently small to be ignored.  In arm B, we make the same 
approximations where the subscript becomes i for idler.  We can now write 
 

( )
( )[ ]
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where gA and gB are slowly varying functions determined from Equations (72) and (73).  
Note that we must keep the v’s in the time factor of the exponential expressions.  It is 
convenient to replace the summations by integrals in the standard fashion. 
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(77) 
and similarly for the idler.  In a similar fashion, going from discrete indices to continuous 
indices, we have 
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( ) ( )

( ) ( )[ ] ( ) ( ) ( )ssssss
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ssss
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32,,,

,
        (78) 

 
The idler terms are treated similarly. 

We take the simplest model for the bi-photon.  A plane wave pump of angular 
frequency pω  and wave vector zpek )  propagates in crystal of length L, then it can be 
shown that  

 

( ) ( ) ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ Δ
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2
sin2 3 Ldv

cvvi sis
isis κκδγδπ rr                    (79) 

 

where γ is a dimensionless constant, 
is

si uu
D 11

−=  and us (ui) is the group velocity of the 

signal (idler) photon inside the crystal.  The filters are chosen so that pis ω=Ω+Ω  and 
( ) ( ) piiisss cknn =ΩΩ+ΩΩ , where nj is the index of refraction for j=s and i.  In this case 

the temporal and the transverse terms factor and we have 
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To compute V, we first do the integrals over the κr ’s.  Evaluating the integral over iκr  

using Equations (72) and (73) gives si κκ rr
−=  so that we may obtain  
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(81) 
 

where Rs is the optical path length from the lens to the object in the sense that ksRs is the 
phase change that a plane wave would acquire in traveling from the lens to the object.  If 

the beam expander is not present, i
s

i
sss ddDR

λ
λ

++= .  Now, substituting Equation (81) 

into the equation for V gives 
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Using the imaging condition 
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Where ( )κrLP~  is the Fourier transform of ( )ρ

r
LP .  If the lens aperture is infinite then 
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ratio of the wavelengths. 
 In order to give some more insight into these results, we consider an unfolded 
version of Figure 56 (Upper), which was developed by David Klyshko.  In the Klyshko 
picture (shown in Figure 57), the source is shown to emphasize that the ideal phase 
matching condition corresponds to transverse wave number conservation which can be 
represented as a ray passing through the system.  The object distance has been weighted 
with an effective index of refraction and we omit the beam expander.  It is now a simple 
matter to use geometrical optics to obtain Equation (83) and the magnification 
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 To compute the counting rate, we need to sum over the surface of the bucket 
detector assuming that each point of the surface detects the intensity of the light incident 
on it 

( ) ( )
2

2

12
2

2
22 ~, A

i

s

i

B

s

a
sLa

s

s
BAa t

Df
f

R
KPd

R
L

Vd ρ
λ
λρρ

ρρρρ
r

rr
rr

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∫∫ .      (85) 

 
Therefore, the coincident counting rate is 
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Figure 57 Klyshko picture of a ghost imaging system. 

 
Resolution 
To discuss the resolution we consider a target made up of two point scatterers, one 
located at the origin and the other at the point ar  in the target plane, 
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From Equation (84), we have  
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From the first term in the square brackets of Equation (88), we see that the point spread 
function is determined by the Fourier transform of the lens aperture function. For a 
circular aperture, the radius of the Airy disk is given by 
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where RL is the radius of the aperture and ( )LLP κr~  is negligible provided LL Rxπκ 2≥ , 
x=1.22.  Note that the radius of the Airy disk is proportional to the idler wavelength.  
This is the standard result, as can be seen by taking is DR >>  in Equation (83) so that 

fDi ≅  and NAx iB λα =  where fRNA L= is the numerical aperture of the lens.  
Referring to Figure 57, we see that this is the same result we would obtain from classical 
optics.   
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We now use the Rayleigh criterion to determine the resolution of two image points.  
It should be noted that there are different, related, meanings of the Rayleigh criterion. 
The one used here refers to the ability to resolve two point sources in the object plane. 
The other is the minimum angle between plane waves falling on an aperture that can be 
resolved and can be interpreted as resolving two point sources at infinity. The image of 
the second term in Equation (88) is assumed to lie on the edge of the Airy disk of the first 
term, so  
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We see that the resolution depends on the signal wavelength.  In the type of system of 

interest, Equation (81) gives ss D
f
fR 2

2

2
1≈ .  For typical parameters ms μλ 1= , RL=10cm, 

10
1

2 =
f
f , x = 3 and Ds = 1 – 10 km, we get amin = 3 – 30 mm.  The second meaning of the 

Rayleigh criterion give the ratio amin/Rs as the smallest angle that can be resolved by the 
lens and it is given by a numerical factor times λs/RL.  Finally, let us rewrite Equation 
(90) as  
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where we have used Equation (83) to obtain this last expression. 
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Appendix C    Spatial Resolution Enhancement in Quantum 
Imaging beyond the Diffraction Limit Using Entangled Photon-

Number State 
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Appendix D  Three-Photon Entangled Beams 
 
In recent work on entangled three photon states it was shown that a protocol exists for improving 
resolution.  The use of the protocol for sensors with large intrinsic loss is difficult because the loss entails 
unrealistically long counting times.  To overcome this limitation it has been proposed to replace the 
photons that are subject to the loss by intense beams.  In this paper we initiate an analysis of the protocol 
using beams.  The model presented is chosen to make analytic calculations possible while retaining the 
basic physics of the protocol.  As a first step, we examine the model to determine the temporal or 
longitudinal correlations.  It is shown that in addition to the three-beam entangled state there is a term in 
which two entangled beams occur and a third term with no entanglement.  The counting rate of each of 
these terms is estimated.  We estimate that under ideal conditions for the model considered here, we can 
only get about 5×109/s-cm2.    
 
We consider a simple model illustrated in Fig. 58.  A coherent pair of squeezed states is 
incident on a crystal.  We assume that the crystal is cut so an idler pair, one from each 

beam can be up converted.  To 
do this, it is necessary that the 
idler beams not be degenerate, 
this might be done by 
frequency shifting one of the 
idler beams so that 
ω i1 = ω i + Δω , ω i2 = ω i , and 
ωu = ω i1 + ω i2  or, alternatively, 
by rotating its polarization.   

This avoids the 
complication of an upconverted 
photon being produced by a 
pair of idlers from the same 
beam.  The up-conversion 
coupling is assumed to be weak 
enough so that we can apply 
first order perturbation theory 
to compute the generation of 
the up-converted photons. The 
remaining idler beams are not 

detected and we measure the correlation function  
 

G (3) = Ψ : IaIb Iu : Ψ ,                                                (92) 
 
where I j  is the few cycle average of the photon flux of the up-converted beam for j=u 
and of the two signal beams, j=a, and b. The colons denote normal and time ordering, 
and Ψ is the state of the system at the surface z = Lu . The Hamiltonian for the up-
conversion in the interaction picture and the rotating wave approximation is 
  

 

Figure 58 Correlated beams of signals, s, and idlers, i, 
are produced by down-conversion.   The idlers from 
the lower beam are frequency shifted.  The crystal XU 
is chosen so there is phase matching that allows an 
idler from each beam to be up-converted to a photon. 
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Hu (t) = h γ u au
†bi1bi 2S(Δk12Lu ) fi1(ν i1 ) fi 2 (ν i2 )e− i (ωi1+ω i 2 −ωu )t + hc( )

u , i1,i 2
∑

S(x) = eix/2 sinc(x / 2)
Δk12 = ku − ki1 − ki 2

 (93) 

 
where aj and aj

† are the annihilation and creation operators for the signal modes incident 
of the up-conversion crystal, the bj  and bj

†  are the corresponding idler operators, and hc 
means Hermitian conjugate.  In addition, we assume that the beams are collinear and 
parallel to the z-axis.  Note that the coupling constant γu has the dimensions of frequency. 

Using perturbation theory in powers of γ u , Ψ = Ψ(n )

n=0

∞

∑ ,   and the first order term 

is  

 
 
Ψ (1) =

1
ih

dtHu (t) Ψ (0)

0

T

∫  (94) 

 
where the state  incident on the up-conversion crystal is 
 
 Ψ (0) = U j 0

j
∏ U j = eγ (a j

†bj
†−a jbj ) , (95) 

 
0  is the vacuum state. We have assumed perfect phase matching for each pair of modes 

in the squeezed states so ω sj + ω ij = ω p .   Then taking the idler fields incident on the up-
conversion crystal to be  
 
 Eα

(+ ) (z, t) = eαr fα (ναr )e
− i (ωat−kα z )bαr

r
∑ α = i1,i2  (96) 

 
where eαr is defined in Eq. (113), fα (ν rα )  represents a filter centered on Ωα with 
ν rα = ω r − Ωα  and 

 
ν rα = Ωα , we find  

 

Ψ (1) = (−i
γ uc

3

wuwi1wi 2

Tu sinh2 γ ) δωum , ωi1+ωi 2
S(Δk12 Lu ) fi1(ν i1) fi2 (ν i 2 ) U j
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∏

ωum ,ωi1,ωi 2

∑ aum
† as1

† as2
† 0

ν j = ω j − Ω j j = um,i1,i2
(97) 

 
where we have assumed that Tu , the up-conversion interaction time, is sufficiently large 
that the time integral can be approximated by a delta function, and the w’s are the group 
velocities of the beams defined in detail below in Eq. (104). In addition, we have used  
 

 
U j

−1bijU j = coshγ bij + sinhγ asi
†

ω p = ω sj + ω ij kp = ksj + kij .
 (98) 

 
  Using these results, the leading order in the correlation function may be written as  
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 G (3) (τ a ,τ b ,τ u ) = (2ε0c)3 Ea
(+ )Eb

(+ )Eu
(+ ) Ψ (1) 2

 (99) 
 
where the free space fields for the signal beams and the up-converted photon are 
 
 Eα

(+ ) = eαr fα (ναr )e
− iωaτα aαr

r
∑  (100) 

 
α =a,b,u.  It will be shown that the correlation function may be written as  
 

 

G (3) = Γ χ1 χ1 cosh4 γ + χ2 χ2
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 (101) 

 
where the three orthogonal states χ j  correspond to distinct processes illustrated in 

Figure. 59.  In the state χ1  
the signal photons detected at 
a and b are the twins of the 
idlers that created the up-
converted photon u.  This state 
corresponds to an entangled 
three-photon state and 
dominates in the limit of small 
γ.  The state χ2 corresponds 
to four cases in which only 
one of the signals detected at a 
or b is a twin of one of the 
idlers that generated u. This 
state is a product state of a 
single signal photon and a 
two-photon entangled state.  
Finally, in χ3  neither signal 
detected at a or b is a twin of 
one of the idlers that generates 
u.   This state is separable.  
The last two states decrease 
the visibility associated with 

the three-photon entangled state.  
To evaluate Ea

(+ )Eb
(+ )Eu

(+ ) Ψ (1)  we need to compute  

 
 

Figure 59 The plus sign on the i2 photon line is a 
frequency shifter.  For  χ2  we only show one 
diagram, there is a diagram where s is detected at b and 
two more diagrams with s1 detected rather than s2. 
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aarabtaun U j
j

∏ aum
† as1

† as2
† 0 = U j

j
∏ δun um aar coshγ + bar

† sinh†( ) abt coshγ + bbt
† sinhγ( )×

as1
† as2

† 0

= U j
j

∏ δum un cosh2 γ δar s1δbt s2 + ar ↔ bt( )0⎡⎣ + coshγ sinhγ ×

(δar s1bbt
† as2

† + ar ↔ bt) + 1 ↔ 2{ }0 + sinh2 γ bar
† bbt

† as1
† as2

† 0 ⎤⎦.

 

(102)
 
The three classes of states can be read off from this equation.  In evaluating the delta 
function in Eq. (102) some care must be taken to note that  
 

 
 

ωum − ω i1 − ω i2 = Ωu − Ωi1 − Ωi2( )+ νum + ν s1 + ν s2

= νum + ν s1 + ν s2

 (103) 

  
using frequency phase matching for both the down-conversion and up-conversion.  
Similarly  
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dω i
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 (104) 

 
where we again use perfect phase matching and wij is the group velocity of the idler ij in 
the up-conversion crystal and similarly wu is the group velocity evaluated at Ωu of the up-
converted photon. 

Using Eqations (101), (102), and (104), it is not difficult to show that  
 

χ1 = δνm ,−νr −νt
fu (νm )e− iνmτu e− iφ S(Δkrt Lu ) fa

2 (ν r ) fb
2 (ν t )e

− i (νmτu +νrτa +νtτb ) + r ↔ t( )
νm ,νr ,νt

∑ 0  (105) 

 
where φ = Ωuτ u + Ωs (τ a + τ b ) , and we have assumed that fi1(ν) = fa (−ν) = fa (ν) and 
similarly for i2 and b. 

Converting the sums to integrals 
να

∑ →
LQ

c
dνα∫ , and using νm = ν i1 + ν i2  and 

ν = (νi1 + νi2 ) / 2 , we find 
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 (106a) 
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τ ab = τ a − τ b

′τ =
1
2

(τ ua + τ ub ) = τ u −
1
2

τ a + τ b( ).
   (106d) 

 
 
This complicated expression can be understood by noting that ′τ  is the difference 
between the time the up-converted photon and the “center of mass” of the two signal 
photons are at z = Lu , while τab is the difference in time when the two signal photons are 
at z = Lu .  Di1,i2Lu is the difference in time to cross the up-converting crystal for idler 
wave packets with central frequencies Ωi1 and Ωi2 

In order to get a feeling Eq. (106a), assume that the filters are Gaussians, 
fn (ν) = e−ν2Tn

2 /2 .  We also assume that the function S(Δκ 1(νm ,ν)Lu ) is much narrower than 
any of the filters, then the inner product vanishes unless | ′τ |<| D | Lu , 
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 (107) 

 
where H(x) is the Heaviside step function, and we have taken Ta = Tb .   

The contribution to G (3)  of the entangled term has a magnitude that is given by  
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where Nu is the average flux of u-photons detected  and is defined in Equation (115) 
along with TN.  The parameter  %Γ  is the product of the intensities detected at a and b times 
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the efficiency of producing the up-converted photons. The term following  %Γ  in Equation 
(108) is the energy of a single photon idler photon divided by the area of the idler beam 
and the difference in time it takes the idlers to cross the up-converting crystal.  The next 
term is of order unity. 

Using Eq. (102) and referring to Figure 59, we find that  
 

 

χ2 = 2 { δνm ,−νi +νs 2
fu (νm )e− iφ [ fi1(ν i ) fb

2 (ν s2 ) fa (ν r )
νm ,νi ,νr ,νs 2

∑ e− i (νmτu +νrτa +νs 2τb ) ×

S(Δk12 ) + a ↔ b ]ar
†bi

† 0 }  (109) 
 

where the creation operator bt
† generates an idler which is the twin of a signal photon of 

frequency Ωs + ν t  that is undetected, and the photon detected at a is a signal photon of 
frequency Ωs + ν s1 .  The second term in the square bracket is obtained by interchanging 
the indices a and b since the signal photons are degenerate.  The remaining two terms 
come from the interchange of which twin of the idlers is detected.  These last two terms 
are identical to the first two as can be seen by redefining the summation indices.  It is 
clear that χ1  and χ2 are orthogonal. 

Following the method used get Eq. (106) 
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  (110) 

 
This term factors into the first term in brackets which corresponds to detecting 
independent signal photons. In the second term there is an interference term arising from 
the identity of the detected signal photons. 

Making the same assumptions to evaluate the integrals, we get  
 

 χ2 χ2 =
4 2π 3

Ta
2 | Du ,i1

2 | Lu
2

LQ

c
⎛
⎝⎜

⎞
⎠⎟

4

Λ( 2τ au

| Du ,i1 | Lu

) + Λ( 2τ bu

| Du ,i1 | Lu

)
⎡

⎣
⎢

⎤

⎦
⎥ .       (111) 

 
where  

Λ(x) =
1 0 < x < 1
0 otherwise

⎧
⎨
⎩

. 

 
The appearance of τau=τa -τu  is indicative of the fact that the signal detected at a and 

up-converted photon are partially entangled because ωu + ω sa = 2ω p − ω sb .  Therefore, 
once the signal frequency ωb  is determined, the other two photons are entangled in 
frequency. Also since we use the up-converted photon as a trigger, τau is positive.  The 
second term in Equation (111) corresponds to the interchange of a and b.  Consequently, 
there is interference between the case in which the entangled pair is detected at (a,u) and 
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the other signal is detected at b and when the pair is measured at  (b,u) and the other 
signal is at a. 

Finally, following the same path, we find that  
 

 

χ3 χ3 = 2
LQ

c
⎛
⎝⎜

⎞
⎠⎟

4

dν r fa
2 (ν r )∫( ) dν t fb

2 (ν t )∫( ) dνm dν ×∫∫

| fi1(−
νm

2
+ ν) fi 2 (− νm

2
+ ν) fu (νm )S(Δκ 3(νm ,ν) |2

=
2π 2

Ta
2Ti | Du ,i1 | Lu

LQ

c
⎛
⎝⎜

⎞
⎠⎟

4

      (112) 

 
where Δκ1  is defined in Eq. (106).  This term factors into three terms corresponding to 
the separate detection of two signal beams that are uncorrelated with the up-conversion 
beam and up-converted photon. 

The magnitude of the ratio of the second and first term in Eq. (100) using Equations  

(111) and (107) is approximately 4 2
π

D2

Du ,i
2 tanh2 γ .  Using some typical numbers 

[Timothy E. Keller, Doctoral Thesis, UMBC (1998)], this is a factor of order 5 tanh2γ  so 
that the contribution of the two terms is comparable when γ≈0.5.  The ratio of the third 

term and the first term is approximately 2
π 2

| D |2 Lu

Ti | Du ,i |
tanh4 γ ≈ 0.5 tanh4 γ . The small 

value of this term is mainly due to the fact that | D | Lu ≈ 10−12 s . 
Finally, we estimate the number of coincidence counts from Equation (108).  Using a 

conversion efficiency for the up-conversion of the order Iu / Ii = 10−4 , and assuming that 
Ia=Ii≈10 W/cm2

 we expect that the counting rate for the up-conversion will be about 
5×109/s-cm2.  If we assume ideal conditions we can expect this to be an upper bound to 
the coincidence rate.  This implies for the model discussed in this paper that once loss is 
included that the counting rate will be too low for practical sensor application.  Current 
experiments are underway in which the rate of the up-conversion is much larger than 
envisioned here.  In this case the single photon model of the up-conversion breaks down 
and an intense beam is produced.  This case requires a different detection scheme. 
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Appendix E 
 
We define various quantities here in detail.  The units of electric field are  
 

 
 

eαr =
hωαr

εα ALQ

≈
hΩa

εα ALQ

    (113) 

 
where VQ = ALQ is the quantization volume, εα = ε0nα

2  is the dielectric constant, and the 
index of refraction nα  is evaluated at Ωα .  The up-conversion coupling has the 
dimensions of frequency and is given by  
 

 
 

γ u = 2χ (2) (Ωu;Ωi1,Ωi2 )
hΩu

2εuVQ

Ωi1Ωi2

4ni1
2 ni2

2 LQ
2 Lu   (114) 

 
where χ (2)(Ωu;Ωi1,Ωi2 ) is the electric susceptibility in MKS units and so has the 
dimensions of inverse electric field, and A is the cross-section area of the up-converted 
beam. 
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Appendix F 
 
We compute the average flux of the up-converted photons detected  

Nu =
c

VQ

| fu (νm ) |2
m
∑ Ψ(1) aum

† aum Ψ(+ )

=
c

VQ

γ uc3

wuwi1wi2
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2

sinh4 γ Tu
2 | fu (νm ) |2 δωum ,ω i1+ω i 2

S(Δk12Lu )2 fi1
2 (ν i1) fi2

2 (ν i2 )
m,i1,i2
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  (115) 

 
Going to the continuum gives 
  

Nu =
c

VQ

γ uc3

wuwi1wi2

⎛
⎝⎜

⎞
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2

sinh4 γ
LQ

2 Tu
2

c2 dνm∫ | fu (νm ) |2 dν∫ S(Δk12Lu )2 ×

| fi1(−
νm

2
+ ν) fi2 (−

νm

2
− ν) |2

         (116) 

 

where we have made the change of variables ν = νi1 − νi2  and ν+ =
1
2

(ν i1 + ν i2 ) → νm .  

Now assuming that the sinc function is much narrower than the idler, using Equation 
(106c) we replace the sinc function by  

 

S(Δk12Lu )2 →
2π
DLu

δ (νm +
Di1,i2

D
ν)

r =
Di1,i2

D
D =

1
2
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   (117) 

 
gives 
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(118) 
 
where we have taken the filters for the idlers to be identical fi (ν) = e−ν2Ti

2 /2 .  Finally, 
taking the group velocities to be equal to the phase velocities, using 
 

Ii1 =
cni1

VQ

hΩi1

LQ

c
π

Ti

, 
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and similarly for i2, we have 
 

 

 

Nu ==
π
2

χ (2)2

ε0h
Ii1Ii2

Ωu LuTu
2

ni1ni2 | D | c3 2Tu
2 + 3Ti

2

cTi

LQ
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⎠
⎟

2

        (119) 

 
Similarly intensity of the signal photons at each detector is given by  
 

 
 

Ia = c hΩa

VQ

π
LQ

cTa

sinh2 γ =
hΩa

A
π

Ta

sinh2 γ   (120) 

 
which may be interpreted as the energy per unit area times the bandwidth times the 
amplification factor of the down-conversion. 
 




